Table of Contents

List of Exercises ... v

Part One: Introduction .. 1

Before You Start ... 1

 Course Objectives 1

Rhino Basics .. 3

 The Rhino for Windows Interface 3
 The Rhino Screen 4
 Menus 5
 Toolbars 5
 Graphics Area 6
 Command Area 9
 The Mouse 9
 Entering Commands 9
 Help 11
 View the Command Line History 12
 View Recent Commands 12
 Navigating Around the Model 18
 Move Objects 19
 Copy Objects 20
 Changing the View of Your Model 22
 Panning and Zooming 22
 Resetting Your View 23

Part Two: Creating Geometry ... 29

Creating Two-Dimensional Objects .. 31

 Drawing Lines 31
 Drawing Free-form Curves 33
 Modeling Aids 34
 Model Setup 36
 Saving Your Work 38
 Layers 38
 Deleting Objects 42

 Precision Modeling ... 47
 Absolute Coordinates 47
 Relative Coordinates 48
 Polar Coordinates 49
 Distance and Angle Constraint Entry 50
 Viewports 53
 Object Snaps 59
 Analysis Commands 62
 Drawing Circles 64
 Drawing Arcs 71
 Drawing Ellipses and Polygons 76
 Modeling Helix and Spiral 85

Editing Objects ... 89
 Fillet 89
 Chamfer 94
 Move 99
 Copy 100
 Undo and Redo 102
 Rotate 102
 Group 103
 Mirror 104
 Join 105
 Scale 105
 Array 108
 Trim 112
 Split 114
 Extend 115
 Offset 118

Point Editing ... 129
 Nudge Controls 134
<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Three: 3-D Modeling and Editing</td>
<td>139</td>
</tr>
<tr>
<td>Creating Deformable Shapes</td>
<td>141</td>
</tr>
<tr>
<td>Modeling with Solids</td>
<td>157</td>
</tr>
<tr>
<td>Creating Surfaces</td>
<td>167</td>
</tr>
<tr>
<td>Importing and Exporting Models</td>
<td>221</td>
</tr>
<tr>
<td>Importing and Exporting Rhino File Information</td>
<td>221</td>
</tr>
<tr>
<td>Rendering</td>
<td>225</td>
</tr>
<tr>
<td>Rendering with Flamingo</td>
<td>233</td>
</tr>
<tr>
<td>Dimensions</td>
<td>237</td>
</tr>
<tr>
<td>Dimensions</td>
<td>237</td>
</tr>
<tr>
<td>Making a 2-D Drawing from a 3-D Model</td>
<td>240</td>
</tr>
<tr>
<td>Printing</td>
<td>243</td>
</tr>
<tr>
<td>Part Four: Customizing Workspaces and Toolbars</td>
<td>247</td>
</tr>
<tr>
<td>Rhino Settings</td>
<td>249</td>
</tr>
<tr>
<td>Options</td>
<td>249</td>
</tr>
<tr>
<td>Document Properties</td>
<td>253</td>
</tr>
<tr>
<td>Custom Toolbar Layouts</td>
<td>255</td>
</tr>
</tbody>
</table>
List of Exercises

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rhino basics</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Display options</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>Drawing lines</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>Drawing interpolated curves</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>Drawing curves from control points</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>Drawing lines and curves using mode functions</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>Layers</td>
<td>39</td>
</tr>
<tr>
<td>8</td>
<td>Selecting objects</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>Practice using delete and selection options</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td>Setting up a model</td>
<td>48</td>
</tr>
<tr>
<td>11</td>
<td>Entering absolute coordinates</td>
<td>49</td>
</tr>
<tr>
<td>12</td>
<td>Entering relative coordinates</td>
<td>49</td>
</tr>
<tr>
<td>13</td>
<td>Entering polar coordinates</td>
<td>49</td>
</tr>
<tr>
<td>14</td>
<td>Distance constraint entry</td>
<td>50</td>
</tr>
<tr>
<td>15</td>
<td>Distance and angle constraint entry</td>
<td>51</td>
</tr>
<tr>
<td>16</td>
<td>Practice using distance and angle constraint entry</td>
<td>52</td>
</tr>
<tr>
<td>17</td>
<td>Modeling in 3-D space</td>
<td>55</td>
</tr>
<tr>
<td>18</td>
<td>Practice using distance and angle constraints</td>
<td>58</td>
</tr>
<tr>
<td>19</td>
<td>Using object snaps</td>
<td>60</td>
</tr>
<tr>
<td>20</td>
<td>Drawing circles</td>
<td>65</td>
</tr>
<tr>
<td>21</td>
<td>Practice drawing circles</td>
<td>67</td>
</tr>
<tr>
<td>22</td>
<td>Using circle-related object snaps</td>
<td>69</td>
</tr>
<tr>
<td>23</td>
<td>Practice drawing arcs (1)</td>
<td>72</td>
</tr>
<tr>
<td>24</td>
<td>Practice drawing arcs (2)</td>
<td>75</td>
</tr>
<tr>
<td>25</td>
<td>Practice drawing ellipses and polygons</td>
<td>78</td>
</tr>
<tr>
<td>26</td>
<td>Drawing free-form curves</td>
<td>87</td>
</tr>
<tr>
<td>27</td>
<td>Fillet</td>
<td>89</td>
</tr>
<tr>
<td>28</td>
<td>Chamfer</td>
<td>94</td>
</tr>
<tr>
<td>29</td>
<td>Practice with Fillet and Chamfer</td>
<td>97</td>
</tr>
<tr>
<td>30</td>
<td>Move</td>
<td>99</td>
</tr>
<tr>
<td>31</td>
<td>Copy</td>
<td>101</td>
</tr>
<tr>
<td>32</td>
<td>Rotate</td>
<td>102</td>
</tr>
<tr>
<td>33</td>
<td>Grouping</td>
<td>103</td>
</tr>
<tr>
<td>34</td>
<td>Mirror</td>
<td>104</td>
</tr>
<tr>
<td>35</td>
<td>Join</td>
<td>105</td>
</tr>
<tr>
<td>36</td>
<td>Scale</td>
<td>105</td>
</tr>
<tr>
<td>37</td>
<td>Array</td>
<td>108</td>
</tr>
<tr>
<td>38</td>
<td>Trim</td>
<td>112</td>
</tr>
<tr>
<td>39</td>
<td>Split</td>
<td>114</td>
</tr>
<tr>
<td>40</td>
<td>Extend</td>
<td>115</td>
</tr>
<tr>
<td>41</td>
<td>Offset</td>
<td>118</td>
</tr>
<tr>
<td>42</td>
<td>Practice</td>
<td>124</td>
</tr>
<tr>
<td>43</td>
<td>Practice</td>
<td>125</td>
</tr>
<tr>
<td>44</td>
<td>Practice</td>
<td>126</td>
</tr>
<tr>
<td>45</td>
<td>Practice</td>
<td>127</td>
</tr>
<tr>
<td>46</td>
<td>Control point editing</td>
<td>130</td>
</tr>
<tr>
<td>47</td>
<td>Practice with curves and control point editing</td>
<td>136</td>
</tr>
<tr>
<td>48</td>
<td>Creating a rubber duck</td>
<td>142</td>
</tr>
<tr>
<td>49</td>
<td>Model a bar with text</td>
<td>158</td>
</tr>
<tr>
<td>50</td>
<td>Basic techniques for making surfaces</td>
<td>168</td>
</tr>
<tr>
<td>51</td>
<td>Extruding surfaces</td>
<td>171</td>
</tr>
<tr>
<td>52</td>
<td>Lofted surfaces</td>
<td>179</td>
</tr>
<tr>
<td>53</td>
<td>Revolved surfaces</td>
<td>184</td>
</tr>
<tr>
<td>54</td>
<td>Using a rail revolve</td>
<td>185</td>
</tr>
<tr>
<td>55</td>
<td>Using 1-rail sweeps to create surfaces</td>
<td>186</td>
</tr>
<tr>
<td>56</td>
<td>Using 2-rail sweeps to create surfaces</td>
<td>188</td>
</tr>
<tr>
<td>57</td>
<td>Using a network of curves to create surfaces</td>
<td>191</td>
</tr>
<tr>
<td>58</td>
<td>Practice using one-rail sweeps</td>
<td>192</td>
</tr>
<tr>
<td>59</td>
<td>Creating a toy hammer</td>
<td>195</td>
</tr>
<tr>
<td>60</td>
<td>Creating a squeeze bottle</td>
<td>207</td>
</tr>
<tr>
<td>61</td>
<td>Exporting models</td>
<td>221</td>
</tr>
<tr>
<td>62</td>
<td>Practice rendering a model</td>
<td>225</td>
</tr>
<tr>
<td>63</td>
<td>Practice dimensioning</td>
<td>239</td>
</tr>
<tr>
<td>64</td>
<td>Practice making a 2-D drawing for export</td>
<td>240</td>
</tr>
<tr>
<td>65</td>
<td>Practice printing</td>
<td>243</td>
</tr>
<tr>
<td>66</td>
<td>Practice with options</td>
<td>249</td>
</tr>
<tr>
<td>67</td>
<td>Practice with document properties</td>
<td>253</td>
</tr>
<tr>
<td>68</td>
<td>Customizing a toolbar layout</td>
<td>255</td>
</tr>
</tbody>
</table>
Part One:
Introduction
Before You Start

This course guide accompanies the Level 1 training sessions. Level 1 shows you how to produce 3-D models using NURBS geometry.

In class, you will receive information at an accelerated pace. For best results, practice at a Rhino workstation between class sessions, and consult your Rhino reference manual and the Help file for additional information.

Duration:
3 days

Course Objectives
In Level 1, you learn how to:

- Utilize the features of the Rhino user interface
- Customize your modeling environment
- Create basic graphic objects—lines, circles, arcs, curves, solids, and surfaces
- Model with precision using coordinate input, object snaps, and SmartTrack tools
- Modify curves and surfaces with edit commands
- Use control point editing to modify curves and surfaces
- Analyze your model
- Display any portion of the model
- Export and import models to and from different file formats
- Render the model
Rhino Basics

The Rhino for Windows Interface

Before learning individual tools, we will get acquainted with the Rhino interface. The following exercises examine the interface elements used in Rhino: the Rhino window, viewports, menus, toolbars, and dialog boxes.

There are many ways to access the commands in Rhino—the keyboard, menus, and toolbars. We will focus on the menus in this class.

To open Rhino:

- Double-click the Rhino icon from the Windows desktop.
The Rhino Screen

Rhino divides its window into six areas that supply information or prompt you for input.

<table>
<thead>
<tr>
<th>Screen Area</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menu Bar</td>
<td>Access commands, options, and help.</td>
</tr>
<tr>
<td>Command area</td>
<td>Lists prompts, commands you enter, and information displayed by the command.</td>
</tr>
<tr>
<td>Toolbars</td>
<td>Access shortcuts to commands and options.</td>
</tr>
<tr>
<td>Graphics area</td>
<td>Displays the open model. Several viewports can be displayed. The default viewport layout displays four viewports (Top, Front, Right, Perspective).</td>
</tr>
<tr>
<td>Viewports</td>
<td>Displays different views of the model within the graphics area.</td>
</tr>
<tr>
<td>Status bar</td>
<td>Displays the coordinates of the pointer, the status of the model, options, and toggles.</td>
</tr>
</tbody>
</table>

![Rhino screen diagram](image)

Watch the command line to find out what is happening.
Menus

Most of the Rhino commands can be found in the menus.

![Rhino View menu](image)

Toolbars

Rhino toolbars contain buttons that provide shortcuts to commands. You can float a toolbar anywhere on the screen, or dock it at the edge of the graphics area.

Rhino starts up with the Standard toolbar docked above the graphics area and the Main1 and Main2 toolbars docked on the left.
Toolips

Toolips tell what each button does. Move your pointer over a button without clicking it. A small yellow tag with the name of the command appears. In Rhino, many buttons can execute two commands. The tooltip indicates which buttons have dual functions.

To start a Polyline, click the LMB, to start the Line Segments command click the RMB.

Flyouts

A button on a toolbar may include other command buttons in a flyout toolbar. Usually the flyout toolbar contains variations on the base command. After you select a button on the flyout, the flyout disappears.

Buttons with flyouts are marked with a small white triangle in the lower right corner. To open the flyout toolbar, hold down the left mouse button for a moment or press the right mouse button.

The Lines toolbar is linked to the Main1 toolbar. After the flyout is open you can pick any of the buttons on the toolbar to start a command.

Graphics Area

The Rhino graphics area holding the viewports can be customized to suit your preferences. The position of viewports can be arranged in different configurations.
Viewports

Viewports are windows in the graphics area that show you views of your model. To move and resize viewports, drag the viewport title or borders. You can create new viewports, rename viewports, and use predefined viewport configurations. Each viewport has its own construction plane that the cursor moves on and a projection mode.

To toggle between a small viewport and one that fills the graphics area, double-click the viewport title.

Rearranged Rhino screen. *Command line at the bottom, single maximized viewport, and toolbars docked in different locations.*
Viewport tabs

Viewport titles can be shown in tabs. The bold face tab designates the active viewport. Tabs make it easy to switch between viewports when using maximized or floating viewports. To activate Viewport Tabs: From the View menu, click Viewport Layout, then click Show Viewport Tabs.

The tabs are located below the graphics area.
Command Area

The command area displays commands and command prompts. It can be docked at the top or the bottom of the screen or it can float anywhere. The command window shows two lines by default. To open a window that displays the command history, press F2. The text in the Command History window can be selected and copied to the Windows clipboard.

The Mouse

In a Rhino viewport, the left mouse button selects objects and picks locations. The right mouse button has several functions including panning and zooming, popping up a context-sensitive menu, and acting the same as pressing the Enter key. Use the left mouse button to select objects in the model, commands or options on the menus, and buttons in the toolbars. Use the right mouse button to complete a command, to move between stages of commands, and to repeat the previous command. The right mouse button is used to initiate commands from some toolbar buttons.

Drag with the right mouse button to pan and rotate in viewports. Use the mouse wheel or hold down the Ctrl key and drag with the right mouse button to zoom in and out in a viewport. You must press and hold the right mouse button down to activate this feature.

Entering Commands

Use the command line to type commands, pick command options, type coordinates, type distances, angles, or radii, type shortcuts, and view command prompts.

To enter information typed at the command line, press Enter, Spacebar, or right mouse button over a viewport.

Note: Enter and Spacebar perform the same function.

Shortcuts are customizable key combinations. You can program the function keys and Ctrl key combinations to perform Rhino commands.

Clickable options

To use command options, click the option on the command line or type the underlined letter of the option and press Enter. (The interior capitalization is meaningless.)
Autocomplete command name

Type the first few letters of a command name to activate the autocomplete command list. When enough letters of the command are typed so that it is unique, the command name completes on the command line. Press Enter to activate the command once the full command name appears. As you type command names, the autocomplete command list appears. As you type more letters, the list is narrowed down to the possible commands. Left click on the command in the list to start it.

Repeating commands

To repeat the last command, right-click in a viewport, or press **Enter** or **spacebar**. To repeat previous commands, right-click in the command line window and select from a list.

Canceling commands

To cancel a command, press **Esc** or enter a new command from a button or a menu.
Help

Press **F1** at any time to access Rhino Help. In addition to finding information about each command, Rhino help has conceptual information as well as many examples and graphics to help you complete your model. When you are stalled for any reason, the first place you should look is the help file. You can also access help for a specific command by starting the command and then press **F1**.

In addition, the Command Context command displays the help topics in a dockable window and displays help for the current command.

Most of the commands include short video clips that show how the command and the options work.

If Auto-update is checked, the help for the current command displays. If Auto-update is unchecked, you can type the name of the command that you want displayed and then press enter to display the information.
View the Command Line History

The command history window lists the last 500 command lines from the current Rhino session. Press **F2** to view the command history.

View Recent Commands

Right-click the command line to view recently used commands. To repeat the command, select it from the popup menu.

The number of commands listed is set in Rhino Options. The default limit is twenty commands. When you use your twenty-first command the first one drops off the list.
Exercise 1—Rhino basics

1. From the **File** menu, click **Open**.
2. In the **Open** dialog box, select **First Model.3dm**.

You will find this model in the Training folder. If you haven’t copied the files to your hard drive from the Training folder on the Rhino CD, you should do this before you proceed.

Two parallel viewports and one perspective viewport.

This model contains five objects: a cube, a cone, a cylinder, a sphere, and a rectangular plane.
3 From the **View** menu, click **Viewport Layout**, then click **4 Viewports**.

![Viewports](image)

Three parallel viewports and one perspective viewport

4 In the **Status Bar**, click **Snap** to turn on the grid snap.

Grid snap may already be on in your system. Be careful that you do not turn it off instead of on. If grid snap is on, the word “Snap” will be black in the status bar. If it is off, the word “Snap” will be gray.

Note: This is an important step. Grid snap only lets your cursor move in certain intervals. In this model, by default grid snap is set to one half of a grid line. Grid snap helps you line up your objects as if you were building with LEGO® blocks.
5 Click the mouse in the **Perspective** viewport to make it active.
The viewport title highlights when it is active. The active viewport is
the viewport where all your commands and actions take place.

6 Click with the **Right Mouse Button (RMB)** on the **Perspective**
viewport title, then click **Shaded**.
The objects appear shaded. A shaded viewport lets you preview the
shapes. The viewport will remain shaded until you change it back to a
wireframe view. You can change any viewport to shaded mode. Later
we will discuss the other viewport display options.

7 From the **Render** menu, click **Render**.
Rendering the model opens a separate render window. The model
displays in render colors previously assigned to the objects. You can
also set lights and a background color. You will learn about doing this
later. You cannot manipulate the view in the render display window but
the image can be saved to a file.

8 Close the render window.
9 In the **Perspective** viewport, click and drag with your right mouse button held down to rotate the view. The plane helps you stay oriented. If the objects disappear, you are looking at the bottom of the plane.

10 Right click on the **Perspective** viewport title, then click **Ghosted**.

11 Right click on the **Perspective** viewport title, then click **X-ray**.

12 Right click on the **Perspective** viewport title, then click **Rendered**.
13 Change to **Wireframe** mode.
14 To rotate your view, drag from the bottom of the view toward the top. You are now under the objects looking up.

15 Change to **Shaded** mode.
The plane obscures the objects. In shaded mode, the plane helps you see when your viewpoint is below the objects.

To get back to your original view:
- Press the **Home** key to undo your view changes.

If you are “lost in space” in the perspective view:
- From the **View** menu, click **Viewport Layout**, and then click **4 Viewports**. This takes you back to the default viewport settings.
Navigating Around the Model

You have used the right mouse button to rotate in the **Perspective** viewport. You can hold **Shift** and drag with the right mouse button to pan. Dragging the right mouse button to move around does not interrupt any commands in progress.

To pan in a viewport:

1. In the Top viewport, drag with the right mouse button to pan the view.
2. **Pan** the view in the other viewports.

Zooming in and out

Sometimes you want to get closer to your objects or move back so you can see more. This is called **zooming**. As with many things in Rhino, there are several ways to do this. The easiest way is to turn the mouse wheel to zoom in and out. If you don’t have a wheel mouse, hold down the **Ctrl** key and drag up and down in a viewport with the right mouse button.

To zoom in and out:

1. In the Perspective Viewport, roll the wheel on your mouse forward to zoom in, roll it backward to zoom out.
 - The camera zooms at cursor position.
2. In the **Perspective** viewport, hold the **Ctrl** key, click and hold the right mouse button, and drag the mouse up and down.
 - Drag up to zoom in.
 - Drag down to zoom out.
Zooming extents

The Zoom Extents command zooms a viewport so the objects fill up the viewport as much as possible. You can use this command to make everything visible.

To zoom extents in a viewport:
- From the View menu, click Zoom, and then click Extents.

 If you get lost, it is often handy to zoom extents in all your viewports at once, so there is a command to do just that.

To zoom extents in all viewports:
- From the View menu, click Zoom, and then click Extents All.

Move Objects

Dragging follows the construction plane of the current viewport.

Now drag the objects around. You can drag in any viewport. In this model, Snap is set to one-half of a grid line. Using this snap, you should be able to line objects up with each other.

To move objects:

1. Click the cone and drag it.

 The cone highlights to show it is selected.

2. Drag the cone in the Perspective viewport until it lines up with the cylinder.

 It will be inside the cylinder.

 The cone moves on the base that is represented by the grid. This base is called a construction plane. Each viewport has its own construction plane. When you start Rhino, the Perspective viewport has the same construction plane as the Top viewport. You will learn more about using construction planes later.
3 In the **Front** viewport, drag the cone to the top of the cylinder. Watch what happens in the **Perspective** viewport. There are many times when you have to watch what is happening in other viewports to accurately place your objects.

4 Click in the **Perspective** viewport.

5 Change the viewport to a **Rendered Display**.

Try on Your Own

1 Re-open the model. Do not save changes.

2 Drag the objects around.

 Use the **Front** viewport to move the objects vertically and the **Top** or **Perspective** viewport to move them horizontally.

Copy Objects

To create more objects, copy the shapes.

To start with a new model:

1 From the **File** menu, click **Open**.

2 Do not save the changes.

3 In the **Open** dialog box, select **First Model.3dm**.
To copy objects:

1. Click the box to select it.
2. From the Transform menu, click Copy.
3. Click somewhere in the Top viewport.
 It usually helps to click a spot that relates to the object like the middle or near a corner.

4. Click where you want the first copy.
 Zoom in closer if you like.
5. Click other places to make more copies of the box.

6. When you have enough copies, press Enter.

Try on Your Own

- Make copies of more objects and move them around. See if you can build something.
Changing the View of Your Model

When you add detail to your models, you will need to see different parts of your model with different magnifications. You can use the view commands, the mouse, and the keyboard to change the view in a viewport.

Each view corresponds to the view through a camera lens. The invisible target of the camera is located in the middle of the viewport.

Viewports

With Rhino, you can open an unlimited number of viewports. Each viewport has its own projection, view, construction plane, and grid. If a command is active, a viewport becomes active when you move the mouse over it. If a command is not active, you must click in the viewport to activate it.

Most viewport controls can be accessed through the viewport popup menu.

To start the popup menu, right click the viewport title.

Parallel vs. Perspective Projection

Unlike other modelers, Rhino lets you work in both parallel and perspective views.

To toggle a viewport between parallel and perspective view:

1. Right-click the viewport title, click **Viewport Properties**.
2. In the **Viewport Properties** dialog box, click **Parallel** or **Perspective**, and then click OK.

Panning and Zooming

The simplest way to change the view is to hold down the **Shift** key and drag the mouse with right mouse button held down. This pans the view. To zoom in and out, hold down the **Ctrl** key and drag up and down or use the mouse wheel.

You can also use the keyboard to move around:

<table>
<thead>
<tr>
<th>Key</th>
<th>Action</th>
<th>+ Ctrl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Arrow</td>
<td>Rotate left</td>
<td>Pan left</td>
</tr>
<tr>
<td>Right Arrow</td>
<td>Rotate right</td>
<td>Pan right</td>
</tr>
<tr>
<td>Up Arrow</td>
<td>Rotate up</td>
<td>Pan up</td>
</tr>
<tr>
<td>Down Arrow</td>
<td>Rotate down</td>
<td>Pan down</td>
</tr>
<tr>
<td>Page Up</td>
<td>Zoom in</td>
<td></td>
</tr>
<tr>
<td>Page Down</td>
<td>Zoom out</td>
<td></td>
</tr>
<tr>
<td>Home</td>
<td>Undo View Change</td>
<td></td>
</tr>
</tbody>
</table>
You can change your view in the middle of a command to see precisely where you want to select an object or select a point.

There are other Zoom controls that will be discussed in other exercises.

Resetting Your View

If you get lost, four view techniques can help you get back to a starting place.

To undo and redo view changes:

- Click in a viewport, then press your **Home** or **End** key on your keyboard to undo and redo view changes.

To set your view so you are looking straight down on the construction plane:

- From the **View** menu, click **Set View**, and then click **Plan**.

To bring all your objects into view:

- From the **View** menu, click **Zoom**, and then click **Zoom Extents**.

To bring all your objects into view in all viewports:

- From the **View** menu, click **Zoom**, and then click **Zoom Extents All**.
Exercise 2—Display options

Open the model **Camera.3dm**. You will use this to practice changing views. You will create views from six directions and an oblique perspective view.
To change the number of viewports:

1. Make the **Top** viewport active.
2. From the **View** menu, click **Viewport Layout**, and then click **Split Horizontal**.
3. Make the **Front** viewport active.
4. From the **View** menu, click **Viewport Layout**, and then click **Split Vertical**.
5. Repeat this step for the **Right** Viewport.
6. Right click on the **Top** viewport title at the top, click **Set View**, then click **Bottom**.
7. Right click on the **Front** viewport title on the left, click **Set View**, then click **Left**.
8. Right click on the **Right** viewport title on the right, click **Set View**, then click **Back**.

Each viewport is Split down the middle either horizontally or vertically.

To change the shape of viewports:

1. Move your cursor to the edge of a viewport until you see the resizing cursor, hold the left mouse button down, and drag the bar. If two viewports share the edge, both resize.
2. Move your cursor to the corner of a viewport until you see the resizing cursor, hold the left mouse, and drag the intersection in any direction. If several viewports touch at that corner, all resize.

To synchronize the viewports:

1. Click the **Synchronize Views** button.
1 Adjust the size shape of the viewports.
2 Make the **Front** viewport active.
3 From the **View** menu, click **Zoom**, and then click **Zoom Extents**.
4 Right click on the **Front** viewport title, click **Set Camera**, and then click **Synchronize Views**.
5 Change the viewport displays to one of the shaded viewport settings.

To zoom to a window:
1 From the **View** menu, click **Zoom**, and then click **Zoom Window**.
2 Click and drag a window around a portion of the model.

"All the views are sized to the same scale as the active viewport and aligned with each other."
To zoom a selected object:
1. Select the shutter release.
2. From the View menu, click Zoom, and then click Zoom Selected.
 The view zooms to the selected object.

To rotate the view:
1. In a perspective viewport, drag with right mouse button.
2. In a parallel viewport, use the arrow keys.

To maximize and restore a viewport:
1. Double-click the viewport title to maximize it.
2. Double-click the title of the maximized viewport to restore it to its smaller size and reveal the other viewports.
Part Two:
Creating Geometry
Creating Two-Dimensional Objects

Drawing Lines

The Line, Lines, and Polyline commands draw straight lines. The Line command draws a single line segment. The Lines command draws multiple end-to-end line segments. The Polyline command draws a series of straight segments joined together (a single linear curve with multiple segments).

Exercise 3—Drawing lines

1. From the File menu, click New. Do not save changes.
2. In the Template File dialog box, double click Millimeters.3dm.
3. From the File menu, click Save As.
4. In the Save dialog box, type Lines, and then click Save.

To draw line segments:

1. From the Curve menu, click Line, and then click Line Segments to begin the Lines command.
2. Pick a point in a viewport.
3. Pick another point in a viewport. A line segment appears between the two points.
4. Pick another point.
5. Continue to pick points. Additional segments appear. Each segment meets but is not joined to the previous segment.
6 Press Enter to end the command.
 You can press the right button instead of pressing the Enter key on your keyboard to terminate the command.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close</td>
<td>Closes the shape by drawing a segment from the last point picked to the first point picked. This ends the command.</td>
</tr>
<tr>
<td>Undo</td>
<td>Deletes the last point picked.</td>
</tr>
</tbody>
</table>

To use the Close option:
1 Repeat the Lines command.
2 Pick a Start point.
3 Pick 3 or 4 more points.
4 Click Close.
 The last line will end at the original start point. Line segments are individual lines that meet at a common endpoint.

To draw a polyline:
1 From the Curve menu, click Polyline, and then click Polyline to begin the Polyline command.
2 Pick a Start point.
3 Pick 3 or 4 more points.
4 Press Enter when done.
 This makes an open polyline. A polyline is made of line segments that are joined together. It is one object.

To use the Undo option:
1 Repeat the Polyline command.
2 Pick a Start point.
3 Pick 3 or 4 more points.
4 Click Undo on the command line.
 Notice that your cursor moves back to the previous point and one segment of the polyline is removed.
5 Continue to pick points.
6 Press Enter or click Close to end the command.
To draw a single line segment:
1. From the Curve menu, click Line, and then click Single Line to begin the Line command.
2. Pick a Start point.
3. Pick an End point.
 The command ends after one segment is drawn.

To use the BothSides option:
1. From the Curve menu, click Line, and then click Single Line to begin the Line command.
2. Click BothSides on the command line.
3. Pick a Middle point.
4. Pick an End point.
 A segment is drawn with equal length on both sides of the middle point.

Drawing Free-form Curves

The InterpCrv and Curve commands draw free-form curves. The InterpCrv command draws a curve through the points you pick. The Curve command uses control points to create a curve.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close</td>
<td>Closes the shape by drawing a segment from the last point picked to the first point picked. This ends the command.</td>
</tr>
<tr>
<td>EndTangent</td>
<td>After choosing a point on another curve, the next segment will be tangent to the point you picked and end the command.</td>
</tr>
<tr>
<td>Undo</td>
<td>Deletes the last point picked.</td>
</tr>
<tr>
<td>Degree</td>
<td>You can set the degree of the curve.</td>
</tr>
<tr>
<td>Knots</td>
<td>Determines how the interpolated curve is parameterized. When you draw an interpolated curve, the points you pick are converted into knot values on the curve. The parameterization means how the intervals between knots are chosen.</td>
</tr>
<tr>
<td>Sharp</td>
<td>When you make a closed curve, it will come to a point instead of making a smooth closure as it normally does.</td>
</tr>
</tbody>
</table>
Exercise 4—Drawing interpolated curves

1. From the Curve menu, click **Free-form**, and then click **Interpolate Points**.
2. Pick a **Start** point.
3. Continue picking points.
4. Click **Close** to make a closed curve or, press **Enter** to end the command.

Exercise 5—Drawing curves from control points

1. From the Curve menu, click **Free-form**, and then click **Control Points**.
2. Pick a **Start** point.
3. Continue picking points.
4. Click **Close** to make a closed curve or, press **Enter** to end the command.

Modeling Aids

Modes are modeling aids that you can toggle on or off by pressing shortcut keys, a function key, typing a single letter command, or clicking a button.

Click the **Snap**, **Ortho**, **Planar** or **History** panes on the status bar to toggle these modeling aids on and off.

Snap

Forces the marker to snap on grid intersections.

You can also toggle **Snap** on and off by pressing **F9** or typing the letter **S** and pressing **Enter**.

Ortho

Restricts cursor movement to the points at a specified angle from the last point created. The default angle is 90 degrees.

You can also toggle **Ortho** on and off by pressing **F8** or pressing and holding the **Shift** key down.

If Ortho is set to on, hold down the Shift key to toggle Ortho off. If Ortho is off, hold down the Shift key to toggle Ortho on. F8 or Shift
Planar
This is a modeling aid similar to Ortho. This helps you model planar objects by forcing input to be on a plane parallel to the construction plane that passes through the last point that you picked.
You can also toggle Planar On-Off by typing the letter P and pressing Enter.

History
Records history and updates history-aware objects. With History recording and Update turned on, a lofted surface can be changed by editing the input curves.
In general, it is best to leave the Record option set to No and use the Record History status bar pane to selectively record history. Recording history uses computer resources and makes saved files larger.

Grid
Pressing F7 hides or shows a reference grid in the current viewport of the graphics screen at the construction plane.

Exercise 6—Drawing lines and curves using mode functions
1 Toggle Snap on and draw some lines.
 The marker snaps to each grid intersection.
2 Toggle Snap off, toggle Ortho on and draw some lines and curves.
 You can only input points that are at 90 degree intervals from the last point. Using Snap and Ortho toggles you can draw with precision. We will discuss other ways to get precision in a later session.
Model Setup

In Rhino you can create full-size models using precise measurements. You might need to change the modeling environment depending on the type of model you are creating; the default options may not always work.

To change the options:
1. From the **File** menu, click **Properties**.
2. In the **Document Properties** dialog box, under **Rhino Options**, click **Modeling Aids**.
 - **Modeling Aids** lets you control **Ortho**, **Object Snap**, **Grid Snap**, and other mode options.
3. Change the **Ortho** option to snap every **30** degrees.
4 In the **Document Properties** dialog box, click **Grid**.

5 In **Grid properties**, change the following settings.
 - You can change the appearance of the modeling environment by changing the grid elements. The grid spacing, the frequency of the major lines, and the number of grid elements can be changed. The Grid dialog box lets you configure grid settings.

6 Change the **Grid Extents** setting to **10**.

7 Change the **Minor grid lines every** setting to **1**.

8 Change the **Major lines every** setting to **4**.

9 Change the **Snap Spacing** setting to **.25**, and click **OK**.

10 Draw some more lines and curves with **Snap** and **Ortho** on.
 - Notice that the marker now snaps between the grid intersections and that **Ortho** snaps at every 30 degrees.

11 Try to draw the closed polyline to the right with **Snap** and **Ortho** turned on.

To reset the modeling aids options:

1 From the **Tools** menu, click **Options**.

2 In the **Rhino Options** dialog box, click **Modeling Aids**.

3 Change the **Ortho** options to snap every **90** degrees.
Saving Your Work

Save your work periodically during a session to keep it from getting accidentally deleted.

To save your model:

- From the **File** menu, click **Save**.
- Or, click one of the other options. You will have an opportunity to save your work.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save</td>
<td>Saves your model and keeps it open.</td>
</tr>
<tr>
<td>SaveSmall</td>
<td>Save your model without render or analysis meshes and preview image to minimize file size.</td>
</tr>
<tr>
<td>IncrementalSave</td>
<td>Save sequentially numbered versions of your model.</td>
</tr>
<tr>
<td>SaveAs</td>
<td>Saves your model to a specified file name, location, and format.</td>
</tr>
<tr>
<td>SaveAsTemplate</td>
<td>Save as a template.</td>
</tr>
</tbody>
</table>

Layers

Rhino layers work like CAD layering systems. By creating objects on different layers, you can edit and view related portions of a model separately or as a composite. You can create as many layers as you like.

You can display all layers simultaneously or turn any of them off. You can lock layers so they are displayed but cannot be selected. Each layer has a color. You can assign a name to each layer (for example, Base, Body, Top) to organize the model or you can use preset layer names (Default, Layer 01, Layer 02, Layer 03).

The **Layers** window manages layers. Use it to set up layers for your model.
Exercise 7—Layers

To create a new layer:
1. From the **Edit** menu, click **Layers**, and then click **Edit Layers**.
2. In the **Layers** window, click **New**.
3. The new **Layer 06** appears in the list, type **Line** and press **Enter**.
4. Click **New**.
5. The new Layer 06 appears in the list, type **Curve** and press **Enter**.

To assign a color to a layer:
1. Click the **Color** patch on the **Line** row in the list.
2. In the **Select Color** dialog box, click **Red** from the list.
 - The right half of the sample rectangle turns red.
 - Hue, Sat, Val are the hue, saturation and value components of the color.
 - R, G, and B are the red, green and blue components of the color.
3. Click **OK**.
4. In the **Layers** window, the new color appears in the color bar on the Line row of the layer list.
5. Repeat steps 1–3 to make the **Curve** layer **Blue**.
6. Click **OK** to close the dialog box.

To make a layer current:
1. In the **Status Bar**, click the **Layer** pane.
2. In the Layer popup, click **Line**.
3. Draw some lines.
 - The lines are on the Line layer and they are colored red.

Notes:

- The Default layer is created automatically when you start a new model with no template. If you use a standard Rhino template, a few additional layers are also created.

- Hue is controlled by moving the line around the circular portion of the color wheel.
- Hue is the color that is referred to as a scale ranging from red through yellow, green and blue and then circularly back to red.
- Saturation and Value are controlled by moving the small circle around in the square portion in the middle of the color wheel.
- Saturation is the vividness of hue. Value is the relative lightness or darkness of a color.
4 To make a different layer current, click the **Layer** pane of the status bar.
5 Click **Curve**.
6 Draw some curves.
 They are on the Curve layer and are colored blue.
7 Draw more lines and curves on each layer.

To lock a layer:
1 From the **Edit** menu, click **Layers**, and then click **Edit Layers**.
2 In the **Layers** window, click the **Lock** icon in the row for **Line**.
 Locking a layer turns it into a reference only layer. You can see and snap to objects on locked layers. You cannot select any objects on locked layers. You cannot make a locked layer current without unlocking it.

To turn a layer off:
1 From the **Edit** menu, click **Layers**, and then click **Edit Layers**.
2 In the **Layers** window, click the **On/Off** icon (light bulb) in the row for **Curve**.
 Turning a layer off makes all objects on it invisible.

Exercise 8—Selecting objects

To select a single object:
- Move your pointer arrow over the object and left-click.
 The object turns yellow, which is the default highlight color.

To select more than one object:
1 Move your pointer arrow over the first object and left-click.
2 While holding the **Shift** key down, move your pointer over another object and left click.

To select more than one object using a window:
1 Move your pointer arrow into an open area to the left of the objects you want to select.
2 Hold your left mouse button down and drag diagonally to the right until you have several objects inside the selection box.
 The window selection box is a solid rectangle
3 Release your mouse button.
 All objects completely inside the selection box will be selected.
To select more than one object using a crossing window:

1. Move your pointer arrow into an open area to right of the objects you want to select.
 - Hold your left mouse button down and drag diagonally to the left until you have several objects inside or touching the box.
 - The crossing selection box is a dotted rectangle.
2. Release your mouse button.
 - All objects inside or touching the box will be selected.
3. To add to your selection set, hold the Shift key down while making another selection.

To hide an object:

1. Select an object.
2. From the Edit menu, click Visibility, and then click Hide.
 - The object becomes invisible.

To show hidden objects:

- From the Edit menu, click Visibility, and then click Show.
 - The Show command redisplays all hidden objects.

To lock an object:

1. Select an object.
2. From the Edit menu, click Visibility, and then click Lock.
 - The object becomes shaded gray. You can see the locked object, you can snap to it, but you cannot select it.

To unlock locked objects:

- From the Edit menu, click Visibility, and then click Unlock.
 - The Unlock command redisplays all locked objects.

Notes:

Hide
Left click for hide.

Show
Right click this button.

Lock
Right-click for unlock.
To change an object from one layer to another:

1. Select an object.
2. From the Edit menu, click Layers, and then click Change Object Layer.
3. In the **Layer for object** dialog box, select the new layer for the object, and click **OK**.

Selecting Objects

Delete removes selected objects from the model. Use **Delete** to practice selecting objects.

Exercise 9—Practice using selection options

1. From the **File** menu, click **Open**.
2. In the **Open** dialog box click **Delete.3dm** and click **Open**, or double-click **Delete.3dm** to open the model.
3. Select the square and the circle.
4. From the **Edit** menu, click **Delete** or press the **Delete** key. The objects disappear.
To start the first practice:

1. Select one of the lines on the hexagon in the Top viewport.
 Because there are several curves superimposed on each other, the selection menu appears, allowing you to select one of the curves.

2. Select the top curve from the list.

3. From the Edit menu, click Delete.
 Observe one disappear in the Perspective viewport.

4. In the Top viewport, use a crossing box to select the surface and the polyline in the top right part of the drawing.
 Both objects are selected.

5. From the Edit menu, click Delete.

6. Make a window to select the polyline and the cylinder in the lower right part of the drawing.
 Only those objects that are completely inside the window are selected.

7. Hold the shift key down and click on the cylinder to remove it from the selection set.

8. From the Edit menu, click Delete.

9. Continue deleting objects in the drawing.
 Practice using different selection methods to select and deselect objects. Use crossing and window. The Shift key while selecting will let you add to your selection set. The Ctrl key while selecting will let you to remove objects from your selection set.

To undo and redo deletions:

1. From the Edit menu, click Undo.
 Each time you click, Undo takes you back one command.

2. From the Edit menu, click Redo.
 Each time you click, the previous Undo is reinstated.

3. Undo all the deletions you made in the previous exercise.
Additional selection options

In addition to the selection options we just practiced, there are several other useful tools for selecting objects. In the next exercise we will use some of these tools.

<table>
<thead>
<tr>
<th>Command</th>
<th>Button</th>
<th>Menu Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SelAll</td>
<td></td>
<td>All Objects (Ctrl+A)</td>
<td>Select all objects.</td>
</tr>
<tr>
<td>SelNone</td>
<td></td>
<td>None (Esc)</td>
<td>Deselect all objects. Note: SelNone does not run inside a command to clear pre-selected objects.</td>
</tr>
<tr>
<td>Invert</td>
<td></td>
<td>Invert</td>
<td>Deselects all selected objects and selects all visible objects that were not previously selected.</td>
</tr>
<tr>
<td>SelPrev</td>
<td></td>
<td>Previous Selection</td>
<td>Re-selects the previous selection set.</td>
</tr>
<tr>
<td>SelLast</td>
<td></td>
<td>Last Created Objects</td>
<td>Selects the last changed objects.</td>
</tr>
<tr>
<td>SelPt</td>
<td></td>
<td>Points</td>
<td>Select all point objects.</td>
</tr>
<tr>
<td>SelCrv</td>
<td></td>
<td>Curves</td>
<td>Select all curves.</td>
</tr>
<tr>
<td>SelPolyline</td>
<td></td>
<td>Polylines</td>
<td>Select all polylines.</td>
</tr>
<tr>
<td>SelSrf</td>
<td></td>
<td>Surfaces</td>
<td>Select all surfaces.</td>
</tr>
<tr>
<td>SelPolysrf</td>
<td></td>
<td>Polysurfaces</td>
<td>Select all polysurfaces.</td>
</tr>
</tbody>
</table>
To select objects using select tools:

1. From the Edit menu, click Select Objects, then click Curves. All the curves are selected.
2. From the Edit menu, click Select Objects, then click Invert. Everything but the previously selected curves are selected.
3. From the Edit menu, click Select Objects, then click None. Everything is unselected.
4. From the Edit menu, click Select Objects, then click Polylines. All of the polylines are selected.
5. From the Edit menu, click Select Objects, then click Surfaces. The single surface is added to the selection set.
6. From the Edit menu, click Select Objects, then click Polysurfaces. The polysurfaces are added to the selection set.
7. From the Edit menu, click Select Objects, then click None.
8. From the Edit menu, click Select Objects, then click Last Created Objects. The cylinder is selected.
So far you have been drawing imprecise lines. Now you will try drawing lines at specific places. To do this you will use coordinates.

Whenever you draw a curve, or create a solid primitive, Rhino asks you for a series of points. You can tell that Rhino is asking for point input two ways: the command prompt has a prompt like Start of line, Start of polyline, Start of curve, or Next point and the arrow-shaped cursor turns into a cross-shaped cursor.

You can enter a point two ways: pick a point in a viewport with the mouse, or type coordinates at the command line.

Rhino uses a fixed Cartesian coordinate system called the world coordinate system (WCS), based on three axes (the x-, y-, and z-axes) that define locations in three-dimensional space.

Each viewport has a construction plane that defines coordinates for that viewport. We will work in the Top and Perspective viewports where the two coordinate systems are the same.

Absolute Coordinates

The first forms of coordinates you will use are called absolute coordinates. Absolute coordinates are exact locations relative to the x-, y-, and z-axes.

Exercise 10—Setting up a model

1. From the File menu, click New.
2. Click Millimeters.3dm, and then click Open.
3. From the File menu, click Save As.
 Name the model BOXES.
 Use the BOXES.3dm model to learn how to draw with absolute coordinates.

Set the units and tolerance of the model before you begin.

You can change the tolerance after you start, but objects created before the change still have the old tolerance value.
Exercise 11—Entering absolute coordinates

1. Double-click the viewport title to maximize the Top viewport.
2. From the Curve menu, click Polyline, and then click Polyline.
3. Type 0,0 and press Enter.
4. Type 5,0 and press Enter.
5. Type 5,5 and press Enter.
6. Type 0,5 and press Enter.
7. Click Close to close the polyline.

Relative Coordinates

Absolute coordinates can be slow and cumbersome, but they do work. Most of the time, relative coordinates are easier to use.

Every time you select a point, Rhino saves that point as the last point. Relative coordinates are based on the last point entered, instead of on the origin (0,0,0) of the construction plane.

Precede the x,y,z coordinates with a single R to enter relative coordinates.

Exercise 12—Entering relative coordinates

1. From the Curve menu, click Polyline, and then click Polyline.
2. Type 8,0 and press Enter.
 These are absolute coordinates.
3. Type R5,5 and press Enter.
 These are relative coordinates.
4. Type R-5,0 and press Enter.
5. Click Close to close the polyline.
Polar Coordinates

Polar coordinates specify a point that is a distance and direction away from 0,0 in the current construction plane.

Vector directions in Rhino start with Zero degrees at 3:00 on a standard clock, then change in an anti-clockwise direction as illustrated below.

For example, if you want a point four units away from the construction plane origin, at a 45° angle anticlockwise from the construction plane x-axis, type 4<45, and press **Enter**.

Relative polar coordinates are preceded by **R**; absolute polar coordinates are not.

Exercise 13—Entering polar coordinates

1. From the **Curve** menu, click **Polyline**, and then click **Polyline**.
2. Type **0,8** and press **Enter**.
3. Type **R5<0** and press **Enter**.
4. Type **R5<90** and press **Enter**.
5. Type **R5<180** and press **Enter**.
6. Click **Close** to close the polyline.
Distance and Angle Constraint Entry

Using distance constraint entry, you can specify a point by typing a distance and pressing **Enter**. Then as you move your cursor in any direction, the distance from the last point will be constrained. This is a good way to specify a line length quickly.

Using angle constraint entry, you can specify an angle by typing `<` followed by a value and pressing **Enter**. The next point is constrained to lines at multiples of the angle relative to the x-axis you specified.

Using the Shift key to toggle Ortho on and off:

When Ortho is off you can hold the **Shift** key down to toggle it on. This method is an efficient way to draw perpendicular lines. In the following example, draw a line 5 units long using distance constraints.

Exercise 14—Distance constraint entry

1. From the **Curve** menu, click **Polyline**, and then click **Polyline**.
2. Type **8,8** and press **Enter**.
3. Type **5** and press **Enter**.
4. Hold the **Shift** key down and pick a point to the right.
 Ortho constrains the marker to 0 degrees.
5. Type **5** and press **Enter**.
6. Hold the **Shift** key down and pick a point up.
 Ortho constrains the cursor to 90 degrees
7. Type **5** and press **Enter**.
8. Hold the **Shift** key down and pick a point to the left.
 Ortho constrains the cursor to 180 degrees.
9. Click **Close** to close the polyline.
Exercise 15—Distance and angle constraint entry

1. From the Curve menu, click Polyline, and then click Polyline.
2. Type 16,5 and press Enter.
3. Type 5 and press Enter, then type <45 and press Enter.
 As you drag your cursor around, the marker snaps to a distance of 5
 and an angle of 45 degrees.
4. Pick a point down and to the right.
 The angle constraint sets the angle.
5. Type 5 and press Enter, then type <45 and press Enter.
6. Pick a point up and to the right.
 The angle constraint sets the angle.
7. Type 5 and press Enter, then type <45 and press Enter.
8. Pick a point up and to the left.
 The angle constraint sets the angle.
9. Click Close to close the polyline.
10. Save your model. You will use this model for another exercise.
Exercise 16—Practice using distance and angle constraint entry

1. Start a new model. Save as Arrow.

2. Draw the arrow with a polyline, using a combination of absolute coordinates (x,y), relative coordinates (Rx,y), polar coordinates (Rdistance<angle), and distance constraint. Begin your model at -11,0. The following is an example of the command line input that you might use:
 - Next point: r-2,-2
 - Next point: r8,0
 - Next point: r1,1
 - Next point: r11<0
 - Next point: r0,-1
 - Next point: r6,2
 - Next point: r-6,2
 - Next point: r0,-1
 - Next point: r11<180
 - Next point: r1<180
 - Next point: r-1,1
 - Next point: r8<180
 - Next point: c

3. Save your model.
To make it 3-D:

1. Select the polyline (1).
2. From the **Surface** menu and click **Revolve**.
3. On the **Status Bar**, toggle **Osnap** on, and check **End**.

4. Select the end of the arrow along the centerline (2).
5. Select the other end of the arrow (3) along the centerline.
6. Press **Enter** to use the default **Start Angle**.
7. Press **Enter** to use the default **Revolution Angle**.

Your arrow is now a three-dimensional model.
Viewports

Viewports are windows in the Rhino graphics area that show you a view of your model. To move and resize viewports, drag the viewport title or borders. The cursor moves along a construction plane, which is defined for each viewport. You can create new viewports, rename viewports, and use predefined viewport configurations. To activate a viewport click anywhere in the viewport and the title highlights. If you are in a command sequence, you simply have to move your cursor into a viewport to activate it.

Construction planes

The construction plane is the guide used for modeling Rhino objects. Points you pick are always on the construction plane unless you use coordinate input, elevator mode, or object snaps.

Each construction plane has its own axes, a grid, and an orientation relative to the world coordinate system.

Default construction planes are provided with the default viewports.

- The **Top** construction plane x- and y-axes align with the world x- and y-axes.
- The **Right** construction plane x- and y-axes align with the world y- and z-axes.
- The **Front** construction plane x- and y-axes align with the world x- and z-axes.

The **Perspective** viewport uses the **Top** construction plane.

Each construction plane has a grid. The grid is a plane of perpendicular lines lying on the construction plane. On default grids, every fifth line is slightly thicker. The red line represents the construction plane x-axis. The green line represents the construction plane y-axis. The red and green lines meet at the construction plane origin.

The icon in the left hand corner always shows world coordinates, which are different from the construction plane axes.
Exercise 17—Modeling in 3-D space

Rhino makes it easy to draw in 3-D space. You can draw on a different construction plane by simply moving your cursor into a different viewport. Another useful tool for modeling in 3-D space is **elevator mode**.

In the following exercise we will draw in different viewports and use elevator mode to move some points in 3-D space.

Elevator mode lets you pick points that are off the construction plane. Elevator mode requires two point picks to completely define the point. The first specifies the base point. The second specifies how far the final point is above or below the base point.

After the base point is specified, the marker is constrained to a tracking line perpendicular to the construction plane that passes through the base point.

Pick a second point to specify the coordinate of the desired point. You can pick a point with the mouse, or type a single number to specify the height above the construction plane. Positive numbers are above the construction plane; negative numbers are below.

You will use Snap and Ortho to draw in different viewports.

1. Open the model Chair.3dm.
 The model units are centimeters.
2. Toggle Planar off and Snap on. Toggle Ortho on as needed.
3. From the Curve menu, click Polyline, and then click Polyline.
4. Move your cursor into the Front viewport.
5. Type 0,0 and press Enter.
6. Use coordinate input to draw the first part of the chair frame.
7. Move your cursor to the Right viewport to draw a horizontal line.
8 Move your cursor to the **Front** viewport hold down the **Ctrl** key, and pick the point at the lower end of the diagonal line. Holding the **Ctrl** key while clicking with the left mouse button activates elevator mode.

9 Release the **Ctrl** key, move your cursor to the **Right** viewport and adjust the point until it lines up with the other part of the chair, and pick.

10 Continue drawing the rest of the chair frame.

11 On the next to the last segment you will have to use elevator mode again.

12 Click Close.
To change the construction plane:

We now want to draw along the chair back, so we will change the construction plane.

1. On the Status Bar, click Osnap, and check End.
2. From the View menu, click Set CPlane, then click 3 Points.
3. Move your cursor to the Perspective viewport, and pick the vertex (1) at the back of the chair.
4. Pick the vertex (2) at the other side of the back.
5. Pick the vertex (3) at the top of the chair.
6. Draw some lines on the new construction plane.
 The construction plane is now aligned with the back of the chair.

To make it solid:

1. Select the chair frame.
2. From the Solid menu, click Pipe.
3. Type 3 and press Enter.
 The chair has a solid frame.
4. Save the model.
On your own:

Try some variations and add some features.

Exercise 18—Practice using distance and angle constraints

1. Start a new model using the **Millimeters** template. Save as **V-Block**.
2. Double-click the viewport title in the **Front** viewport to maximize it. Create the following model in the front construction plane.
3. Draw the object below using a combination of absolute coordinates \((x,y)\), relative coordinates \((rx,y)\), and relative polar coordinates \((rdistance<angle)\).
4. Start your model at **0,0** in the **Front** viewport. Try to create the model using a single polyline.

5. Double-click the viewport title of the **Front** viewport to restore your views.
6. Select the polyline.
7. From the **Solid** menu, click **Extrude Planar Curve**, and then click **Straight**.
8. Type **60** and press **Enter**.
 You can view the model as a three-dimensional object in the **Perspective** viewport.
9. Save your model.
Object Snaps

Object Snaps are tools for specifying points on existing objects. Use them for precision modeling and to get accurate data. Object snaps are often referred to as *osnaps*. In Rhino, reliable modeling and easy editing depends on objects actually meeting at specified points. Objects snaps give you precision you cannot get using the “eyeball” method.

To open the Osnap toolbar

- Click the *Osnap* pane in the status bar.

This toolbar controls persistent object snaps. Use persistent objects snaps to maintain an object snap through choosing several points without having to reactivate the object snap.

When an object snap is active, moving the cursor near an eligible point on an object causes the marker to jump to that point and a tooltip to appear.

Check a box to turn on the object snap. You can place the toolbar anywhere on your desktop.

<table>
<thead>
<tr>
<th>Command</th>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>End</td>
<td></td>
<td>End snaps to the end of a curve, surface edge corner or polyline segment end.</td>
</tr>
<tr>
<td>Near</td>
<td></td>
<td>Near snaps to the nearest point on an existing curve or surface edge.</td>
</tr>
<tr>
<td>Point</td>
<td></td>
<td>Point snaps to a control point or point object.</td>
</tr>
<tr>
<td>Mid</td>
<td></td>
<td>Midpoint snaps to the midpoint of a curve or surface edge.</td>
</tr>
<tr>
<td>Cen</td>
<td></td>
<td>Center snaps to the center point of a curve. This works best with circles and arcs.</td>
</tr>
<tr>
<td>Int</td>
<td></td>
<td>Intersection snaps to the intersection of two curves.</td>
</tr>
<tr>
<td>Perp</td>
<td></td>
<td>Perpendicular To snaps to the point on a curve that makes a perpendicular to the last selected point. It doesn't work on the first point that a command prompts you to pick.</td>
</tr>
<tr>
<td>Tan</td>
<td></td>
<td>Tangent To snaps to the point on a curve that makes a tangent to the last selected point. It doesn't work on the first point that a command prompts you to pick.</td>
</tr>
<tr>
<td>Quad</td>
<td></td>
<td>Quad snaps to the quadrant point. The quadrant point is the maximum or minimum direction on a curve in the x or y construction plane direction.</td>
</tr>
<tr>
<td>Knot</td>
<td></td>
<td>Knot snaps to knot points on curves or surface edges.</td>
</tr>
<tr>
<td>Project</td>
<td></td>
<td>Projects the snap point to the construction plane.</td>
</tr>
<tr>
<td>SmartTrack</td>
<td></td>
<td>SmartTrack is a system of temporary reference lines and points that is drawn in the Rhino viewport using implicit relationships among various 3-D points, other geometry in space, and the coordinate axes' directions.</td>
</tr>
</tbody>
</table>

Notes:
<table>
<thead>
<tr>
<th>Command</th>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable</td>
<td></td>
<td>Temporarily turns off persistent object snaps, retaining settings</td>
</tr>
</tbody>
</table>

Exercise 19—Using object snaps

1. **Open** the model **Osnap.3dm**.
2. Toggle **Snap** and **Ortho** off.

Using End and Midpoint object snaps:

1. Click the **Osnap** pane on the status bar. You can leave the **Osnap** toolbar displayed.
 - **Osnap bar with End and Mid on.**
2. Check **End** and **Mid**. You can check and clear individual object snaps to make modeling with precision easy.
3. From the **Curve** menu, click **Polyline**, and then click **Polyline**.
4. Move your cursor close to the end of the line at the lower left corner of the first square and pick when the marker snaps to the end of the line.
5. Pick points to draw the polyline. The line starts exactly at that corner.
6. Snap to the midpoint of the right vertical edge of the second square. The marker snaps to the midpoint of the line that the cursor touches, making the new line cross to the exact midpoint of that side.
7. Pick to draw the polyline.
8. Snap to the end at the upper left corner of the first box. The marker snaps to the end of the line.
9. Pick to draw the polyline, and press **Enter**.
Using Near and Perpendicular to object snaps:

1. In the Osnap toolbar check **Near** and **Perp**, clear **End** and **Mid**.
2. From the Curve menu, click **Polyline**, and then click **Polyline**.
3. Pick on the lower edge the circle at the top right.
 The marker snaps to the point on the circle nearest to where the cursor is positioned.
4. Pick the top horizontal edge of the second square.
 The marker snaps to a point making a perpendicular to the previous point.
5. Pick to draw the polyline segment, and press **Enter**.

Using Intersection and Tangent to object snaps:

1. In the Osnap toolbar check **Int** and **Tan**; clear **Near** and **Perp**.
2. From the Curve menu, click **Polyline**, and then click **Polyline**.
3. Pick the intersection where the diagonal line crosses the vertical line on the first square.
 The marker snaps to the intersection between the two lines.
4. Pick the top, left edge of the circle on the right.
 The marker snaps to a point tangent to the circle.
5. Pick to draw the polyline segment, and press **Enter**.

Using Center of object snap:

1. In the Osnap toolbar check **Cen**, clear **Int** and **Tan**.
2. From the Curve menu, click **Polyline**, and then click **Polyline**.
3. Pick on the edge of a circle.
 The marker snaps to the center of the circle.
4. Pick on the edge of the other circle.
 The marker snaps to the center of the circle.
5. Pick to draw the polyline segment, and press **Enter**.
Using Quadrant of object snap:

1. In the Osnap toolbar check Quad, clear Cen.
2. From the Curve menu, click Polyline, and then click Polyline.
3. Pick a point on the top edge of the first circle.
 The marker snaps to the quadrant point of the circle.
4. Pick the left edge of the circle.
 The marker snaps to the quadrant point of the circle.
5. Pick the bottom edge of the circle.
6. Pick the right edge of the circle.
7. Click Close

Analysis Commands

Rhino provides analysis tools for finding lengths, angles, areas, distances, and the volume and centroid of solids. Additional commands let you analyze curve curvature, determine continuity between curves, and find unjoined edges.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>Displays the distance between two points.</td>
</tr>
<tr>
<td>Length</td>
<td>Displays the length of a curve object or surface edge.</td>
</tr>
<tr>
<td>Angle</td>
<td>Displays the angle between two lines.</td>
</tr>
<tr>
<td>Radius</td>
<td>Measures the radius of curvature of a curve, circle, or arc at the point where you pick the curve and displays it on the command line.</td>
</tr>
<tr>
<td>EvaluatePt</td>
<td>The Cartesian coordinates of the point, in both world and construction plane coordinates are displayed on the command line in x,y,z format.</td>
</tr>
</tbody>
</table>

To find the distance between two points:

1. From the Analyze menu, click Distance.
2. Pick the intersection where a diagonal line intersects a vertical line.
3. Pick the intersection where the other diagonal line intersects the same vertical line.
 Use object snaps.
4. Press F2 to display the information.

CPlane angles and deltas: xy = 90 elevation = 0 dx = 0 dy = 3.077 dz = 0
World angles and deltas: xy = 90 elevation = 0 dx = 0 dy = 3.077 dz = 0
Distance = 3.077 millimeters

To find the length of a line:
1. From the Analyze menu, click Length.
2. Select the line between the centers of the circles.
 Length = 8.000 millimeters

To measure the angle between two lines:
1. From the Analyze menu, click Angle.
2. Select a point that defines the start of an angle line.
3. Select a point that defines the end of an angle line.
 Use object snaps as appropriate.
4. Select a point that defines the beginning of the second angle line.
5. Select a point that defines the end of the second angle line.
 The angle displays on the command line in the following format:
 Angle = 21.7711

To measure the radius of a circle:
1. From the **Analyze** menu, click **Radius**.
2. Select one of the circles.
 This also measures the radius of a point on a curve.
 The radius displays on the command line in the following format:
 Radius = 2.5

To evaluate a point:
1. From the **Analyze** menu, click **Point**.
2. Snap to the end point of one of the squares.
 The x,y,z point is displayed for the world coordinate plane and the
 current construction plane.
 - **Point in world coordinates** = 8.000,5.000,0
 - **CPlane coordinates** = 8.000,5.000,0

Drawing Circles
You can create circles using a center point and radius, center point and a diameter, two points on the diameter, three points on the circumference, and tangent points to two coplanar curves and a radius.

<table>
<thead>
<tr>
<th>Button</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Circle</td>
<td>Draw a circle using the center and radius.</td>
</tr>
<tr>
<td></td>
<td>Circle 3Point</td>
<td>Draw a circle through three points on its circumference</td>
</tr>
<tr>
<td></td>
<td>Circle Diameter</td>
<td>Draw a circle using two diameter points.</td>
</tr>
<tr>
<td></td>
<td>Circle Tangent, Tangent, Radius</td>
<td>Draw a circle tangent to two curves with a given radius.</td>
</tr>
<tr>
<td></td>
<td>Circle Tangent to 3 Curves</td>
<td>Draw a circle tangent to three curves.</td>
</tr>
<tr>
<td></td>
<td>Circle AroundCurve</td>
<td>Draw a circle perpendicular to a curve at the chosen point.</td>
</tr>
<tr>
<td></td>
<td>Deformable</td>
<td>Draws an approximation of a circle with a defined number of control points.</td>
</tr>
<tr>
<td></td>
<td>Vertical</td>
<td>Draw a circle perpendicular to the construction plane.</td>
</tr>
</tbody>
</table>
Exercise 20—Drawing circles

To draw a center, radius circle:
1. From the Curve menu, click Circle, and then click Center, Radius.
2. Type 20,10 and press Enter.
3. Type 3 and press Enter.

A circle is created.

To draw a center, diameter circle:
1. From the Curve menu, click Circle, and then click Center, Radius.
2. Type 20,3 and press Enter.
3. Click Diameter.
4. Type 5 and press Enter.

A circle is created that is based on a center point and a diameter. The Diameter option will be the default until you change it.

To draw a 3-point circle:
1. From the Curve menu, and then click Center, Radius.
2. Click 3Point.
3. Snap to an End on one of the squares.
4. Snap to another vertex on the same square.
5. Snap to a third vertex on the other square.

A circle is created with a circumference that intersects the three ends you picked.

To draw a diameter circle:
1. From the Curve menu, and then click Center, Radius.
2. Click Diameter.
3. Pick a point on the screen.
4. Type 3 and press Enter, then turn Ortho on and pick to the right.

A circle is created with the two points you picked as the diameter, and the diameter was constrained to a value of 3.
To draw a tangent, tangent, radius circle:

1. From the **Curve** menu, and then click **Center, Radius**.
2. Click **Tangent**.
3. Select the circle you just created near the top edge.
4. Type **2** and press **Enter**.
5. Pick the other circle.
 A circle is created that is tangent to the two circles you selected with a radius of 2.

To draw a tangent, tangent, tangent circle:

1. From the **Curve** menu, and then click **Center, Radius**.
2. Click **Tangent**.
3. Select a circle you created.
4. Select another circle or line.
5. Pick another piece of geometry.
 A circle is created that is tangent to the three pieces of geometry that you selected.

To draw a circle vertical to the construction plane:

1. From the **Curve** menu, and then click **Center, Radius**
2. Click **Vertical**.
3. Pick a point.
4. Type **3** and press **Enter**.
 The circle is drawn perpendicular to the construction plane. You will be able to see it in the one of the other viewports.
To draw a circle around a curve:

1. From the Curve menu, and then click Center, Radius.
2. Click AroundCurve.
3. Pick a point on a curve.
4. Click Radius.
5. Type 1 and press Enter.

The circle is drawn perpendicular to the curve at the point you picked. You will be able to see it in the Perspective viewport.

Exercise 21—Practice drawing circles

1. Start a new model. Save as Circles.
2. From the Edit menu, click Layers, and then click Edit Layers.
3. In the Layers window, click the Create new layer icon three times.
4. Rename the new layers Box, Line, Circle.
5. Change the color of the Box layer to green, Line to cyan, and Circle to red.
6. Draw the lines and circles on the appropriate layers.

Use Line Segments for the box and Single Line for the centerlines. You will use several of the circle options and object snaps to complete this model.
To make it 3-D:

1. Select the lines that form the rectangle.
2. From the **Surface** menu, click **Extrude Curve**, then click **Straight**.
3. Click **Cap**.
4. Type 2 and press **Enter**.

5. Select the circles.
6. From the **Surface** menu, click **Extrude Curve**, then click **Straight**.
7. Click **Cap**.
8. Type -6 and press **Enter**.

The rectangle generates a box.

The circles generate cylinders.
Exercise 22—Using circle-related object snaps

1. Start a new model. Save as Link.
2. Complete the model as shown.
3. Draw the three large circles first.
4. Draw the small holes next.
 Use object snaps to snap to the centers of the large circles.

To draw the tangent lines:
1. From the Curve menu, click Line, and then click Single Line.
2. Click Tangent.
3. Pick on the edge of one of the circles near where you want the tangent line to attach.
4 Pick on the edge of another circle it will find the tangent points for you.

5 Continue to use this command to complete the model.

6 Save your model.
Drawing Arcs

You can create arcs using various points on the arc and construction geometry.

You can continue an existing curve with an arc to an existing curve, to a point or by an angle.

<table>
<thead>
<tr>
<th>Button</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arc</td>
<td>Draw an arc from the center, start, and angle.</td>
</tr>
<tr>
<td></td>
<td>Arc 3Points</td>
<td>Draw an arc from three points.</td>
</tr>
<tr>
<td></td>
<td>Arc Start, End, Direction</td>
<td>Draw an arc from start point, end point, and the direction from the start point. The direction can be entered after the start point is entered or after the end point is entered.</td>
</tr>
<tr>
<td></td>
<td>Arc Tangent, Tangent, Radius</td>
<td>Creates an arc from tangents and radius.</td>
</tr>
<tr>
<td></td>
<td>Arc Start End Radius</td>
<td>Creates an arc from start point, end point, and radius.</td>
</tr>
<tr>
<td></td>
<td>Convert Output=arcs</td>
<td>Converts a curve to arc segments that are joined together.</td>
</tr>
<tr>
<td></td>
<td>CurveThroughPt</td>
<td>Creates an interpolated curve through selected points and then converts the curve to arc segments.</td>
</tr>
</tbody>
</table>

Arc options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deformable</td>
<td>Creates an arc shaped NURBS curve</td>
</tr>
<tr>
<td>Extension</td>
<td>Extend a curve with an arc.</td>
</tr>
</tbody>
</table>
Exercise 23—Practice drawing arcs (1)

- **Open** the model **Arc1.3dm**.

To draw a center, start, end or angle arc:
1. From the Curve menu, click **Arc**, and then click **Center, Start, Angle**.
2. Snap to the center of the circle at the lower left.
3. Snap to the end of the line.
4. Snap to the end of the other line.

To draw a start, end, direction arc:
1. From the Curve menu, click **Arc**, and then click **Start, End, Direction**.
2. Pick a start point.
3. Pick an end point.
4 Toggle Ortho on and drag straight up for the tangent at the start point and pick.

5 Make another Direction Arc at the upper right.

To add more arc segments:

1 From the Curve menu, click Arc, and then click Center, Start, Angle.
2 Type E and press Enter.
3 Pick near the end of the arc you just made.
4 Type C and press Enter.
5 With Ortho on pick a point below the first point. The arc will be tangent to the curve you chose.
6 From the **Curve** menu, click **Arc**, and then click **Center, Start, Angle**.
7 Type **E** and press **Enter**.
8 Pick near the end of the arc you just made.
9 Snap to the end of the line.

To draw a tangent, tangent, radius arc:
1 From the **Curve** menu, click **Arc**, and then click **Tangent, Tangent, Radius**.
2 Pick the lower right side of the top circle.
3 Type **3** and press **Enter**.
4 Pick the upper right side of the lower circle.
5 Move your cursor and pick when the correct arc is displayed.

6 From the **Curve** menu, click **Arc**, and then click Tangent, Tangent, Radius.
7 Pick the upper left side of the top circle.
8 Type **6** and press **Enter**.
9 Pick the lower left side of the lower circle.
10 Move your cursor and pick when the correct arc is displayed.

11 Save your model.

Exercise 24—Practice drawing arcs (2)

Draw construction centerlines first: use their intersection point to draw your arcs and circles.

1. Start a new model. Save as Arc2.
2. Create this model using object snaps and the Line, Circle, and Arc commands.

![Diagram](image)

To make it solid:

1. Select the curves.
2. From the Surface menu, click Extrude Curve, then click Straight.
3. Click Cap.
Type 1 and press Enter.
The curves have been extruded and capped.

Drawing Ellipses and Polygons

You can draw ellipses from the center or by the ends. You can draw polygons from a center point or an edge. You can draw a rectangle from diagonal corners or by choosing three points.

Ellipses

<table>
<thead>
<tr>
<th>Button</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ellipse</td>
<td>Draw an ellipse by specifying the center point and axis ends.</td>
</tr>
<tr>
<td></td>
<td>Ellipse Diameter</td>
<td>Draw an ellipse by specifying the axis ends.</td>
</tr>
<tr>
<td></td>
<td>Ellipse FromFoci</td>
<td>Draw the ellipse from the focus points</td>
</tr>
<tr>
<td></td>
<td>AroundCurve</td>
<td>Draw an ellipse whose axis is perpendicular to a curve.</td>
</tr>
</tbody>
</table>
Polygons

<table>
<thead>
<tr>
<th>Button</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Polygon</td>
<td>Creates a polygon from its center and radius.</td>
</tr>
<tr>
<td></td>
<td>Polygon Edge</td>
<td>Draw a polygon by specifying the ends of one edge.</td>
</tr>
<tr>
<td></td>
<td>Polygon Star</td>
<td>Draw a star from a polygon.</td>
</tr>
</tbody>
</table>

Polygon options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NumSides</td>
<td>Specify the number of sides for the polygon.</td>
</tr>
<tr>
<td>Circumscribed</td>
<td>Draw a polygon that is circumscribed about a radius. The default is to draw a polygon that is inscribed in a specified radius.</td>
</tr>
</tbody>
</table>

Rectangles

<table>
<thead>
<tr>
<th>Button</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rectangle</td>
<td>Draw a rectangle using opposite corners.</td>
</tr>
<tr>
<td></td>
<td>Rectangle Center</td>
<td>Draw a rectangle from center and a corner.</td>
</tr>
<tr>
<td></td>
<td>3Point</td>
<td>Draw a rectangle through three points.</td>
</tr>
<tr>
<td></td>
<td>Vertical</td>
<td>Draw a rectangle that is perpendicular to the construction plane.</td>
</tr>
<tr>
<td></td>
<td>Rounded</td>
<td>Create a rectangle with rounded corners (arc or conic).</td>
</tr>
</tbody>
</table>
Exercise 25—Practice drawing ellipses and polygons

Start a new model. Save as **Toy**.

To draw a rectangle from diagonal corners:
1. From the Curve menu, click Rectangle, and then click Corner to Corner.
2. Type \(-10, -5\) and press Enter.
3. Type 20 and press Enter.
4. Type 10 and press Enter.

Draw rectangles from a center point with a length and width, and rounded corners:
1. From the Curve menu, click Rectangle, and then click Center, Corner.
2. Type \(R\), and press Enter to give the rectangle rounded corners.
3. Type 0,0 and press Enter.
4. Type 19 and press Enter.
5. Type 9 and press Enter.

R1.5 for all polygons

Robert McNeel & Associates
6 Type 1, and press Enter.
 If you are creating a rounded rectangle, select a point in the corner to set its curvature.
 Or, type C, and press Enter to toggle from circular rounded corners to conic rounded corners.
7 Repeat these steps for a second rounded rectangle with a length of 18 and a width of 8 with .5 radius corners.

To draw an ellipse from its center and axis ends:
1 From the Curve menu, click Ellipse, and then click From Center.
2 Type 0,0 and press Enter.
3 Type 4, and press Enter.
4 Toggle Ortho on and pick to the right.
5 Type 2.5, and press Enter.
6 Pick a point.

To draw a polygon from its center and radius:
1 From the Curve menu, click Polygon, and then click Center, Radius.
2 Type 3 and press enter to change the number of sides for the polygon.
3 Type -7,-2 and press enter to locate the center point for the polygon.
4 Type 1.5, and press Enter.
5 Pick a point to orient the polygon.
6 Continue drawing the rest of the polygons. Use the same radius for each one.

To make the rounded rectangles solid:
1 Select the larger rounded rectangle.
2 From the Solid menu, click Extrude Planar Curve, then click Straight.
3 Drag it down to set the thickness and click.
4 Select the smaller rounded rectangle.
5 From the Solid menu, click Extrude Planar Curve, then click Straight.
Drag it down until it is slightly above the previous solid and click.

To make the rounded rectangle hollow:
1. Select the outer rounded rectangle.
2. From the Solid menu, click Difference.
3. Select inner rounded rectangle, and press Enter.

To make the rectangle solid:
1. Select the rectangle.
2. From the Solid menu, click Extrude Planar Curve, then click Straight.
3. Drag it up to set the thickness and click.
To make the ellipse solid:
1. Select the ellipse.
2. From the Solid menu, click Extrude Planar Curve, then click Straight.
3. Click Bothsides.
4. Pick to set the thickness.

To cut the ellipse solid from the rectangle:
1. Select the solid rectangles.
2. From the Solid menu, click Difference.
3. Select the solid ellipse, and press Enter.

To extrude the polygons:
1. Select the polygons.
2. From the Solid menu, click Extrude Planar Curve, then click Straight.
3. Pick to set the thickness.

To cut holes with the solid polygons:
1. Select the solid rectangles.
2. From the Solid menu, click Difference.
3. At the Select second set of surfaces or polysurfaces. ... (DeleteInput=Yes) prompt, type D and press Enter.
4 At the **Select second set of surfaces or polysurfaces.** ... (DeleteInput=No) prompts, select the solid polygons and press **Enter**.
Holes will be cut, but the objects will remain.

![Modeling Free-Form Curves](image)

Modeling Free-Form Curves

The use of free-form curves allows more flexibility to create complex shapes.

<table>
<thead>
<tr>
<th>Button</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Curve</td>
<td>Curve by control points draws a curve from specified control points. Control points mostly do not lie on the curve, but they determine its shape.</td>
</tr>
<tr>
<td></td>
<td>InterpCrv</td>
<td>Interpolated curve creates a curve going through specified interpolate points. These points lie on the curve and determine its curvature.</td>
</tr>
<tr>
<td></td>
<td>Conic</td>
<td>Draw a conic curve, which is part of an ellipse, parabola, or hyperbola.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undo</td>
<td>Allows you to back up one point.</td>
</tr>
<tr>
<td>Close</td>
<td>Makes a closed curve.</td>
</tr>
<tr>
<td>Autoclose</td>
<td>Move the cursor close to the start point of the curve, and pick. The curve will close automatically. Press ALT to suspend autoclose.</td>
</tr>
<tr>
<td>Sharp</td>
<td>If Yes, when you make a closed curve, it will have a kink at the start/end point instead of making a smooth (periodic) closure.</td>
</tr>
<tr>
<td>Degree</td>
<td>Allows you to set the degree of the curve.</td>
</tr>
</tbody>
</table>
Exercise 26—Practice drawing curves (1)

1. **Open** the model **Curve.3dm**.
 In this exercise, you will learn how to make a curve by control points, an interpolated curve, and a conic curve to compare the differences between the three methods.
 A common method to create with free-form curves is to draw lines that are accurately measured to use as guidelines. In this exercise the guidelines have been created for you.

2. In the **Osnap** toolbar, check **End** and **Near**, clear all others.
 If you click **End** with your right mouse, it will clear all the others.

3. Toggle **Ortho** and **Snap** off.

To draw a curve by control points:

1. From the **Curve** menu, click **Free-form**, and then click **Control Points**.
2. At the **Start of curve** (Degree=3) prompt, snap to the end point of the polyline guideline.
3. At the **Next point** (Degree=3 Undo) prompt, snap on the polyline guideline using the **Near** object snap.
4. At the **Next point** (Degree=3 Undo) prompt, snap on the polyline guideline using the **Near** object snap until you get to the end.
5. At the **Next point** (Degree=3 Close Sharp=Yes Undo) prompt, press **Enter**.
 A free-form curve is drawn. The control points, while on the guideline, were not on the curve itself except at the two ends.
 Control points control the curvature of the curve, but the curve is usually not on them.
To draw a curve interpolate through points:

1. Change to the Interpolated Curve layer.
2. From the Curve menu, click Free-form, and then click Interpolate Points.
3. Snap to the end point of the polyline guideline.
4. Snap on the polyline guideline using the Near object snap.
5. Continue to snap to the guideline until you get to the end.
6. Press Enter.

A free-form curve is created from specified interpolate points. These points lie on the curve and determine its curvature.

Note how difficult it is to make the curve follow the guideline exactly.

To draw a conic curve:

1. Change to the Conic layer.
2. From the Curve menu, click Conic.
3. Snap to the point (1) at the lower left.
4. Snap to the point (2) above and to the right from the previous point.
5. Snap to the point (3) in between the previous points.
6. Pick a point for the desired curvature.
Modeling Helix and Spiral

The use of free-form curves allows more flexibility to create complex shapes. If you need to control precision, you can make construction lines that define your overall parameters.

<table>
<thead>
<tr>
<th>Button</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Helix]</td>
<td>Helix</td>
<td>Draw a helix. User can specify a radius, the number of turns, the length and direction of the axis.</td>
</tr>
<tr>
<td>![Spiral]</td>
<td>Spiral</td>
<td>Draw a spiral. User can specify two radii, the number of turns, the length and direction of the axis.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td>The helix or spiral axis will be perpendicular to the construction plane in the active viewport.</td>
</tr>
<tr>
<td>AroundCurve</td>
<td>Select a curve for the helix or spiral to wind around to create "phone cord" shapes.</td>
</tr>
<tr>
<td>Flat</td>
<td>Lets you draw a planar spiral.</td>
</tr>
<tr>
<td>Mode</td>
<td>Determines whether the number of turns or the distance between turns is used to create the helix or spiral</td>
</tr>
<tr>
<td>Turns</td>
<td>Allows you to set the number of turns along the axis.</td>
</tr>
<tr>
<td>Pitch</td>
<td>Allows you to set the distance between turns along the axis.</td>
</tr>
<tr>
<td>ReverseTwist</td>
<td>Allows you to reverse the twist direction of the helix or spiral.</td>
</tr>
</tbody>
</table>

To draw a helix

1. Change to the **Helix** layer.
2. Turn on the **End** and **Point** object snap.
3. From the **Curve** menu, click **Helix**.
4. Snap to the end of the vertical line (1) in the **Perspective** viewport.
5. Snap to the end of the vertical line (2) in the **Perspective** viewport.
6 Pick the point (3) to the right of the axis line.
A helix with 10 turns and a radius of 2.5 is created.

To draw a spiral:

1 Change to the Spiral layer.
2 From the Curve menu, click Spiral.
3 Snap to the end of the other vertical line (1) in the Perspective viewport.
4 Snap to the other end of the same line (2).
5 Click Mode.
6 Click Pitch
7 Type 4 and press Enter.
8 Click ReverseTwist.
9 Snap the point (3) for the radius of the base of the spiral.
10 Snap to the other point (4) for the ending radius.
A spiral is created with a reverse twist and a pitch of 4.
Exercise 27—Drawing free-form curves

In the following exercise we will draw the guidelines and free-form curves for a toy screwdriver.

1. Start a new model. Save as **Screwdriver**.

2. Create **Construction** and **Curve** layers. Make them different colors.

To create the construction lines:

1. Change to the **Construction** layer.

2. Draw a polyline using the dimensions above for the guideline.

To create the curve by control points:

1. Change to the **Curve** layer.

2. Use the Curve command to draw the shape for the toy screwdriver.

3. **Save** your model.
To make it solid:

1. Toggle **Snap** and **Ortho** on.
2. From the **Surface** menu and click **Revolve**.
3. Select the curve and press Enter.
4. Snap to the end of the curve.
5. Snap to the other end of the curve.
6. Press **Enter** to use the default **Start Angle**.
7. Press **Enter** to use the default **Revolution Angle**.

Your model is now a three-dimensional surface.
Editing Objects

Once you create objects, you can move and edit them to produce complex and detailed variations.

Fillet

Fillet connects two lines, arcs, circles, or curves extending or trimming them to touch or to join with a circular arc.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius</td>
<td>Sets the fillet radius. A radius of 0 extends or trims the curves to a corner, but does not create a fillet.</td>
</tr>
<tr>
<td>Join</td>
<td>Yes joins the fillet to the curves. No does not join the fillet to the curves.</td>
</tr>
<tr>
<td>Trim</td>
<td>Yes trims the curves to the fillet arc. No does not trim the curves.</td>
</tr>
</tbody>
</table>

Exercise 28—Fillet

- Open the model Fillet.3dm.

To fillet lines at a zero radius:

1. From the Curve menu, click Fillet Curves.
2. Click Radius to change the radius.
3. Type 0, and press Enter.
 - This Radius option remains the default until you change it.
4. Select an outer vertical line.
5 Select an adjacent horizontal line.
The ends of the lines are trimmed to a corner.

6 Press **Enter** to repeat the command.

7 **Fillet** the other corners, as shown.

To fillet lines using an arc:

1 From the **Curve** menu, click **Fillet Curves**.

2 Type 2 and press **Enter** to change the radius.
This is another method to change the radius.

3 Click **Join** to change the Join option to Yes.
This option joins the curves as they are filleted.

4 Select an outer vertical line.

5 Select an adjacent horizontal line.
The ends of the lines are trimmed to a radius.

6 Press **Enter** to repeat the command.

Notes:

Remember to pick on the part of the line that you want to keep.
7 Fillet the other corners as shown.

8 Press **Enter** to repeat the command.
9 Type **1** and press **Enter**.
 This radius will be used for the smaller object.
10 Select an inner vertical line.
11 Select an adjacent horizontal line.
12 **Fillet** the other corners as shown.

To fillet circles:
1 From the **Curve** menu, click **Fillet Curves**.
2 Type **3** and press **Enter**.
3 Click **Trim**.
 This also disables the Join option.
4 Select the right edge of a circle.
5 Select the right edge of the other circle.
6 Repeat the command for the left side of the circles.

To fillet and join arcs and lines:
1 From the Curve menu, click Fillet Curves.
2 Click Trim.
3 Select one of the arcs in the middle of the viewport.
4 Select the other arc in the middle of the viewport.

5 Repeat this procedure for the arc and the line at the bottom left.

To join the filleted objects:
1 Select the objects at the top with a window.
2 From the Edit menu, click Join.
 The objects are joined together. Curves join only if they touch.
To make a lofted surface:

1. Change to the **Surfaces** layer.
2. Select the two squares in the upper left part of the **Top** viewport.
3. Change to the **Perspective** viewport.
4. From the **Surface** menu, click **Loft**.
 The two squares show a seam direction arrow. They point the same direction.

5. Press **Enter**.
6. In the **Loft Options** dialog box, click **OK**.
 A surface is generated between the two closed polylines.

7. Repeat the procedure for the rounded squares.
8 In the **Loft Options** dialog box, click **OK**.

9 Save your model.

Chamfer

Chamfer connects two curves by extending or trimming them to intersect or to join with a beveled line. Chamfer works on convergent or intersecting curves.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distances</td>
<td>The first chamfer distance specifies the distance from the chamfer end on the first curve to the point where the two curves would intersect. The second chamfer distance specifies the distance of the chamfer end on the second curve to the intersection point. A chamfer distance of 0 trims or extends that curve to the intersection point. If the chamfer distance is non-zero, a chamfer line is created that far from the intersection, and the curve is extended to the chamfer line. If you enter 0 for both distances, the curves are trimmed or extended to their intersection, but no chamfer line is created.</td>
</tr>
</tbody>
</table>

Exercise 29—Chamfer

- **Open** the model **Chamfer.3dm**.

To chamfer lines:

1 From the **Curve** menu, click **Chamfer**.
2 Type **1,1,** and press **Enter**, to set the distances.
3 Select one of the inner vertical lines.
4 Select an adjacent horizontal line.

5 Continue creating chamfers on all of the corners as shown.

6 Press **Enter** to repeat the command.

7 Type **3,2** and press **Enter**.

8 Select one of the outer horizontal lines.

9 Select an adjacent vertical line.

The first value is the distance along the first curve selected, the second value is the distance along the second line selected.

10 Continue creating chamfers on all of the corners as shown.

To join the chamfered objects:

1 From the **Edit** menu, click **Select Objects**, and then click **Curves**.

2 From the **Edit** menu, click **Join**.

The curves have been joined together into closed polylines.

To turn the curves into surfaces:

1 Change to the **Surfaces** layer.

2 From the **Edit** menu, click **Select Objects**, and then click **Curves**.

3 From the **Surface** menu, click **Loft**.

4 Press **Enter**.
5 In the **Loft Options** dialog box, click **OK**.
A surface is generated between the two chamfered rectangles.

6 Save your model.
Exercise 30—Practice with Fillet and Chamfer

1 Open the model Filletex.3dm.
2 Use **Fillet** and **Chamfer** to edit the drawing as shown.
All fillets and rounds use a radius of 0.5 units.

To make it solid:

1. From the **Edit** menu, click **Select Objects**, and then click **Curves**.
2. From the **Solid** menu, click **Extrude Planar Curves**, and then click **Straight**.
3. Type `.5` and press **Enter**.
Move

Use Move to move objects without changing orientation or size.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td>Moves the selected objects vertical to the current construction plane.</td>
</tr>
</tbody>
</table>

Exercise 31—Move

1. **Open** the model **Move.3dm**.

2. Turn off both **Ortho** and **Snap** so you can move objects freely.

3. Turn **Cen** object snap on.

To move using object snaps for placement:

1. Select the small circle at the bottom left side of the **Top** viewport.
2. From the **Transform** menu, click **Move**.
3. Snap to the center of the small circle.
4. Snap to the center of the arc at the lower left of the object.

To move using absolute coordinates:

1. From the **Edit** menu, click **Select Objects**, and then click **Curves**.
2. From the **Transform** menu, click **Move**.
3 Snap to the end of the line at the lower part of the object.
4 Type 0,0 and press Enter.
The end of the line is exactly at point 0,0 in the Top viewport.

To move using relative coordinates:
1 Select the large slotted circle in the middle of the object.
 You will move the slotted circle relative to the part.
2 From the Transform menu, click Move.
3 Pick any point in the Top viewport.
 It is usually better if you pick near the object you are going to move.
4 Type r0,-.25 and press Enter.
The circle is moved down .25 units.

Copy
Copy duplicates selected objects and places them in a new location. The command can repeat to create more than one copy in the same command sequence.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td>Copies the selected objects vertical to the current construction plane.</td>
</tr>
<tr>
<td>InPlace</td>
<td>Duplicates the object at the current location.</td>
</tr>
</tbody>
</table>
Exercise 32—Copy

To copy using object snaps for placement:
1. Select the small circle at the lower left of the object.
2. From the Transform menu, click Copy.
3. Snap to the center of the small circle.
4. Snap to the center of the arc at the upper left of the object.

5. Pick to place the object, and press Enter.

To make multiple copies:
1. Select the small circle at the lower left of the object.
2. From the Transform menu, click Copy.
3. Snap to the center of the small circle.
4. Begin picking points on the screen.
 Each time you pick, a circle will be copied to that location.

5. Press Enter to end the command.
Undo and Redo

If you make a mistake or do not like the results of a command, use Undo. If you decide you want those undone results back after all, use **Redo** command. Redo restores the last thing undone.

<table>
<thead>
<tr>
<th>Rhino Button</th>
<th>Mouse Button</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left-click or Ctrl+Z</td>
<td>Undo</td>
<td>Cancels the effects of the last command.</td>
<td></td>
</tr>
<tr>
<td>Right-click or Ctrl+Y</td>
<td>Redo</td>
<td>Restores the effects of undo.</td>
<td></td>
</tr>
</tbody>
</table>

The number of undos kept in memory can be set in Rhino **Options** on the **General** page,

If a command has an Undo option, type **U** to enter it, or click **Undo** on the command prompt.

You cannot use the Undo command after you exit the modeling session or open a different model.

Rotate

Use Rotate to move objects in a circular motion around a base point. For precise rotation, enter a number of degrees to rotate. Positive numbers rotate counterclockwise; negative numbers rotate clockwise.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy</td>
<td>Duplicates the object as it is rotated</td>
</tr>
</tbody>
</table>

Exercise 33—Rotate

1. Select the large slotted circle in the middle of the object.
2. From the **Transform** menu, click **Rotate**.
3. Snap to the center of the slotted circle.
4. Type **-28** and press **Enter**.
Grouping objects allows all members of the group to be selected as one. You can then apply commands to the entire group.

<table>
<thead>
<tr>
<th>Rhino Button</th>
<th>Mouse Button</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left-click or Ctrl+G</td>
<td>Group</td>
<td>Makes a group from selected objects.</td>
</tr>
<tr>
<td></td>
<td>Left-click or Ctrl+Shift+G</td>
<td>Ungroup</td>
<td>Removes grouping.</td>
</tr>
<tr>
<td></td>
<td>Left-click</td>
<td>AddToGroup</td>
<td>To add objects to a group.</td>
</tr>
<tr>
<td></td>
<td>Left-click</td>
<td>RemoveFromGroup</td>
<td>To remove objects from a group.</td>
</tr>
<tr>
<td></td>
<td>Left-click</td>
<td>SetGroupName</td>
<td>To name groups</td>
</tr>
</tbody>
</table>

Exercise 34—Grouping

To group selected objects:
1. Select the two circles that you placed.
2. From the **Edit** menu, click **Groups**, then click **Group**.

To add objects to a group:
1. Select the polyline on the left, the original circle, and the slotted circle in the center.
2. Press **Enter**.
3. Select one of the circles in the group.
 The objects are now part of the group.

To remove an object from a group:
1. Type **RemoveFromGroup**.
 When the **RemoveFromGroup** command completes, press **Enter**.
2. Select the slotted circle.
3. Press **Enter**.
Mirror
Mirror creates a copy of the objects flipped over a specified axis on the construction plane.

Exercise 35—Mirror
1 Select the group.
2 From the Transform menu, click Mirror.
3 Type 0,0 or snap to the end of the line at the lower right of the part.
4 Toggle Ortho on and pick directly above the previous point.

5 Select the two groups.
6 From the Edit menu, click Groups, then click Ungroup.
Join
Join unites curves that meet at a common end, making a single curve. Join can unite curves that do not touch, if you select them after the command has started. As you select non-touching curves, a dialog box asks if you want to fill the gap.

Exercise 36—Join
1. Select the two polylines.
2. From the Edit menu, click Join.

Scale
Scale changes the size of existing objects without changing their shape. This command scales three-dimensional objects equally along all three axes. There are also 2-dimensional, one-dimensional, and non-uniform scale commands.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy</td>
<td>Preserves the object as it creates a new scaled one.</td>
</tr>
<tr>
<td>Scale factor</td>
<td>Inputs a value for scale factor. Less than one reduces the size, more than one increases the size.</td>
</tr>
</tbody>
</table>

Exercise 37—Scale
1. From the Edit menu, click Select Objects, and then click Curves.
2. From the Transform menu, click Scale, and then click Scale 2-D.
3. Type 0,0 and press Enter.
4. Type **.75** and press **Enter**.
 The whole part has been scaled to 75 percent of its original size.

 ![Diagram](image1.png)

 To scale using the reference point option:

 1. From the **Edit** menu, click **Select Objects**, and then click **Curves**.
 2. From the **Transform** menu, click **Scale**, and then click **Scale 2-D**.
 3. Snap to the center of the slotted circle.
 4. Snap to the quadrant of the slotted circle.
 The radius of the slotted circle is the reference for the scale factor.

 ![Diagram](image2.png)

5. Type **1.375** and press **Enter**.
 The slotted circle now has a larger radius of 1.375. Everything else was scaled proportionally.

 ![Diagram](image3.png)
To make it solid:
1. From the **Edit** menu, click **Select Objects**, and then click **Curves**.
2. From the **Solid** menu, click **Extrude Planar Curves**, and then click **Straight**.
3. Type 1 and press **Enter**.

To scale in 3-D:
1. From the **Edit** menu, click **Select Objects**, and then click **Polysurfaces**.
2. From the **Transform** menu, click **Scale**, and then click **Scale 3-D**.
3. Type 0,0 and press **Enter**.
4. Type 1.5 and press **Enter**.
 The solid is larger in every dimension.

To scale in one dimension:
1. From the **Edit** menu, click **Select Objects**, and then click **Polysurfaces**.
2. From the **Transform** menu, click **Scale**, and then click **Scale 1-D**.
3. Type 0,0 and press **Enter**.
4. Type .5 and press **Enter**.
5 Move your cursor into the **Front** viewport, toggle **Ortho** on, and pick a point above the previous point. The object is half as thick.

Array

Use the **Array** commands to make multiple copies of selected objects. **Array Rectangular** makes rows and columns of objects. **Array Polar** copies objects in a circle around a center point.

Exercise 38—Array

To create a rectangular array:

1. **Open** the model **T-Flange.3dm**.
2. Select the small cylinder (1) that is visible in the **Top** viewport.
3. From the **Transform** menu, click **Array**, and then click **Rectangular**.
4. Type **2** and press **Enter**.
5. Type **2** and press **Enter**.
6. Type **1** and press **Enter**.
7. Type **4** and press **Enter**.
8 Type **1.5** and press **Enter**.
The cylinders are arrayed on the base of the flange.

To create a 3-D array:

1. Select the cylinder (1) that is visible in the **Front** viewport.

2. From the **Transform** menu, click **Array**, and then click **Rectangular**.

3. Type **2** and press **Enter**.
4. Type **2** and press **Enter**.
5. Type **2** and press **Enter**.
6. Type **2** and press **Enter**.
7. Type **-2** and press **Enter**.
8. Type **-4.5** and press **Enter**.
The cylinders are arrayed on both flanges.

The reason that negative numbers are used for the y and z spacing is because the hole is arrayed in the negative direction on those axes.
To make holes in the flange:
1. Save your model.
2. From the Solid menu, click Difference.
3. Pick the flange (1).
4. Press Enter.
5. Pick all of the cylinders (2) for the holes and press Enter. The cylinders are subtracted from the flange.

To create a polar array:
1. Open the model Wheel.3dm.
2. Select the cylinder and the box in the Top viewport.
3. From the Transform menu, click Array, and then click Polar. Snap to the center of the wheel.
4. Type 3 and press Enter.
6 Press Enter.
The cylinders and ribs are arrayed in a circular pattern around the center of the wheel.

![Perspective][1]

To remove the holes from the wheel:
1 Save your model.
2 From the **Solid** menu, click **Difference**.
3 Pick the wheel.
4 Press Enter.
5 Pick all of the cylinders for the holes and press Enter.
The cylinders are subtracted from the flange.

![Perspective][2]
To add the ribs to the wheel:
1. From the Solid menu, click Union.
2. Pick the wheel.
3. Pick each of the ribs and press Enter.

Trim

Trim cuts and deletes portions of an object to make it end precisely at its intersection with another object.

Exercise 39—Trim
1. Open the model Trim-Split.3dm.
2. From the View menu, click Zoom, and then click Window.
3. Make a window around the grid in the lower left corner of the Top viewport.
4 From the **Edit** menu, click **Trim**.

5 Select the two outside vertical lines in the grid.

6 Press **Enter** to go to the next stage of the command.

7 Select each of the horizontal lines at their left and right ends.

 The lines are trimmed to the cutting edges.

8 Press **Enter**.

9 From the **View** menu, click **Zoom**, and then click **Extents All**.

10 From the **Edit** menu, click **Trim**.

11 Select the surface that intersects the sphere in the **Perspective** viewport.

12 Press **Enter**.
13 Select the right side of the sphere.
The sphere is trimmed at the surface.

14 Press Enter.

Split
Splits one object with another into objects, splits a curve at a point you specify. The Split command breaks the object where it intersects the cutting object but does not delete anything.

Exercise 40—Split
1 From the View menu, click Zoom, and then click Window.
2 Make a window around the closed curve in the lower right corner of the Top viewport.
3 From the Edit menu, click Split.
4 Select the closed curve.
5 Press Enter to go to the next stage of the command.
6 Select the lines and press Enter.
7 Press Enter.
The curve is separated into four curves precisely where the lines intersect it.

![Image 1](image1.png)

8 From the View menu, click Zoom, and then click Extents All.
9 From the Edit menu, click Split.
10 Select the sphere, and then press Enter.
11 Select the surface that intersects the sphere and press Enter.
The sphere is separated into two pieces precisely where the surface intersects it.

![Image 2](image2.png)

Extend

Extend lengthens an object to make it end precisely at its intersection with another object or you can lengthen an object when there is no intersection.

Exercise 41—Extend

1 Open the model Extend.3dm.
2 From the Curve menu, click Extend Curve, and then click Extend Curve.
3 Select the line at the left.
4 Press Enter.
5 Select the left ends of the three curves.
The line and curves extend to touch the boundary edge on the left.

6 Press Enter to end the command.

To extend with some of the other options:
1 From the Curve menu, click Extend Curve, and then click Extend Curve.
2 Select the curve at the right.
3 Press Enter.
4 Select the right end of the line.
The line is extended straight.
5 Type T and press Enter.
6 Type A and press Enter.
7 Select the right end of the curve.
The curve continues with a tangent arc to the boundary edge.
8 Type T and press Enter.
9 Type S and press Enter.
10 Select the right end of the arc.
The arc continues with a tangent curve.
To extend to a surface:

1. From the Curve menu, click Extend Curve, and then click Extend Curve.
2. Select the cylinder on the left.
3. Select the surface on the right.
4. Press Enter.
5. Type T and press Enter.
6. Type L and press Enter.
7. Select both ends of the line and the curve.
 The curves extend to the surface of the cylinder and to the surface.

To extend a curve without boundary edges:

1. From the Curve menu, click Extend Curve, and then click By Line.
2. Select near the curve in the upper right side.
3. Pick a point.
 The curve is extended as a tangent line to the point you picked.
4. From the Curve menu, click Extend Curve, and then click By Arc.
5. Select near the upper end of the line on the left.
6. Type 1 and press Enter to set the radius.
7. Pick a point to the left of the line.
8 Pick an end for the arc.

Offset

Offset creates an object parallel or concentric to another object. Use Offset to create specialized copies, such as parallel lines, concentric circles, and concentric arcs, through specified points or at pre-set distances.

Exercise 42—Offset

1. **Open** the model Offset.3dm.
2. Maximize the **Top** viewport.
3. From the **Curve** menu, click **Offset Curve**.
4. Select the line.
5. Pick on the upper right side of the line.
 A parallel line is created.

To offset with the through point option:

1. From the **Curve** menu, click **Offset Curve**.
2. Select the circle.
3. Type **T** and press **Enter**.
4 Snap to the end of the line you offset. A concentric circle is created that goes through the end point of the line.

Offset Using Corner Options

Sharp
1 From the Curve menu, click Offset Curve.
2 Select the polyline.
3 Type 1 and press Enter.
4 Pick inside the polyline.
The polyline is offset with sharp corners.

Round
1 Press Enter to repeat the command.
2 Select the polyline.
3 Type C and press Enter.
4 Type R and press Enter.
5 Pick outside the polyline.
The polyline is offset, but the corners are rounded with arcs.

Smooth
1 Press **Enter** to repeat the command.
2 Select the polyline.
3 Type **2** and press **Enter**.
4 Type **C** and press **Enter**.
5 Choose the **Smooth** option, and press **Enter**.
6 Pick the outside of the polyline.
The polyline is offset, but the corners are tangent blend curves.

Bothsides
1 Select the free-form curve.
2 Press **Enter** to repeat the command.
3 Type **1** and press **Enter**.
4 Click **Bothsides**.
5 Pick on either side of the curve.
 Free-form curves are created on both sides of the selected curve.
6 Select the arc.
7 Press **Enter** to repeat the offset command.
8 Pick on either side of the arc.
Concentric arcs are created on both sides of the selected arc.

To offset a surface:

1 From the Surface menu, click Offset Surface.
2 Select one of the purple surfaces, and press Enter.
3 Place your cursor over the surface and click your left mouse button.

Notice that the direction of the arrows changed. The normal direction of the surface was flipped by the mouse click. If you have a positive number for offset distance, the surface will be offset in the direction of the normal. If you have a negative number it will offset the opposite direction.

The normals should be pointed toward the concave side of the surface.

4 Press Enter.

The surface is offset in the direction of the normals.
To offset a surface to a solid:

1. Select the other purple surface.
2. From the Surface menu, click Offset Surface.
3. Click on the surface to change the normal direction if necessary.

4. Choose the Solid option and press Enter.
5. Press Enter to create the offset surface and the surfaces needed to make the solid.

To offset a polysurface:

1. Select the cylinder.
2. From the Surface menu, click Offset Surface.

The normals on a closed polysurface will always point to the outside.
3 Press **Enter**.

Each surface of the polysurface is offset as a separate piece.
Exercise 43—Practice

1. Start a new model. Save as **Gasket1**

2. Use **Circle**, **Arc**, **Trim**, **Fillet**, and **Join** to create the part shown.

3. Use **Extrude Straight** on the **Solid** menu to create the 3-D part. The extrusion thickness is **0.125**.
Exercise 44—Practice

1. Start a new model. Save as Cam.

2. Use Circle, Arc, Line, Trim, Join, and Array to draw the part shown.

3. Use Extrude Planar Curve > Straight on the Solid menu to create the 3-D part. The extrusion thickness is 0.5.
Exercise 45—Practice

1. Start a new model. Save as **Link**.

2. Use **Line, Arc, Trim, Offset, Join, Fillet** and **Circle** to draw the part shown.

3. Use **Extrude** to create the 3-D part. The extrusion thickness is **0.5**.
Exercise 46—Practice

1. Start a new model. Save as Building.
2. Use Line, Arc, Trim, Offset, Curve, Fillet and Circle to draw the layout of the building shown.
Point Editing

You can display the control points or the edit points of an object so that you can adjust the shape of an object, rather than manipulating the whole object at once. That is called control point editing.

You can use point editing on meshes, curves, and surfaces, but not on polysurfaces or solids.

Rhino’s curves are represented internally with non-uniform rational B-splines (NURBS). Three things determine the shape of a NURBS curve:

- A list of points called control points
- Degree
- A list of numbers called knots

If you change any of these things, it changes the shape of the curve.

A few facts about control points, edit points, and knots

- Control points do not have to be on the curve.
- Edit points are always on the curve.
- Rhino lets you edit curves and surfaces by moving control points and edit points.
- Knots are parameters (that is, numbers, not points).
- Adding knots to a curve or surface lets you control the movement of the object during control-point editing.
Exercise 47—Control point editing

In this exercise we are going to experiment with moving control points. Understanding how curves and lines react when control points are moved is very important to understanding NURBS modeling.

To edit control points:

1. **Open** the model Control Point.3dm.
 There are pairs of curves with different degrees in the model.

2. Turn **Ortho** and **Snap** on.

3. From the **Edit** menu, click **Select Objects**, and then click **Curves**.

4. From the **Edit** menu, click **Control Points**, and then click **Control Points On**. (Press **F10**.)

5. In the **Front** viewport, select the middle row of points.

6. Drag the points vertically, **5** units.

7. In the **Front** viewport, select two rows of points on either side of the center.
Drag the points vertically, 4 units.

Notice that the degree 1 curves (polylines) come to a point at each control point and the control points are exactly on the curve. When a curve or polyline bends at a point like this it is called a kink. If you create a surface from a curve that has a kink, it will have a seam at the kink.

The degree 3 and 5 curves are smooth. The degree 3 curves have more curvature than the degree 5 curves. Individual points have more influence on a small area of the curve with degree 3 curves, while points have greater influence over a wider span of the curve with degree 5 curves.

Press Esc twice to turn off the control points.

Select the curves.

From the Surface menu, click Loft.
In the **Loft options** dialog box, click **OK**.

Because the degree 1 curves were included in the loft, a polysurface is created with a seam at each kink.

Select the surface.

Turn on the control points.

The points do not turn on and the following message is displayed on the command line:

Cannot turn on points for polysurfaces.

Undo the loft.

To change the polylines into curves without kinks:

1. From the **Edit** menu, click **Rebuild**.
2. Select both polylines.
3. Press **Enter**.
4. In the **Rebuild Curve** dialog box change the point count to **7** and the degree to **3**, and click **OK**.

A degree 3 curve cannot have kinks. The curve smoothes and changes shape.

To loft a surface over the curves:

1. Select all of the curves.
2. From the **Surface** menu, click **Loft**.
3 In the **Loft Options** dialog box, click **OK**.
A single surface appears over the curves. The surface can be edited with control points.

![Perspective diagram](image)

To rebuild a surface:

1 Select the surface.
2 From the **Edit** menu, click **Rebuild**.
3 In the **Rebuild Surface** dialog, change the point count to **8** in both the U and V direction. Change the degree to **3** for both U and V.

The surface is smoother with fewer control points.

![Rebuild Surface dialog](image)
Nudge Controls

Another method to move control points and other geometry in a more subtle way is to use the Nudge keys. The nudge keys are the arrow keys on the keyboard activated with the Alt, Alt+Ctrl, and Alt+Shift keys.

To change the nudge settings:

1. From the **Tools** menu, click **Options**.
2. In the **Options** dialog box, on the **Modeling Aids** page, note the **Nudge settings**.

Any of these values can be changed.

To use Nudge keys to move control points:

1. Select a control point in the **Front** viewport.
2. Hold down the **Alt** key down and press an arrow key.
 Notice that it moves (nudges) the point a small amount.
3. Hold the **Alt** and the **Ctrl** key down and press another arrow key.
 The movement is much smaller.
4 Hold the Alt and the Shift key down and press another arrow key. The movement is magnified.

5 Hold the Alt and press the PageUp or PageDown key to nudge in the Z direction.

To use set points to adjust points:

1 Select all the points along the left edge of the surface.
2 From the Transform menu, click **Set Points**.
3 In the **Set Points** dialog box, check **Set X**, and uncheck **Set Y** and **Set Z**.

4 In the Front viewport move the points and click. The control points are aligned.
Exercise 48—Practice with curves and control point editing

1 Start a new model. Save as Glass.

2 Use the Curve command to create the half cross-section of the glass.

To make it 3-D:

1 From the Surface menu, click Revolve.
2 Select the curve you created, and press Enter.
3 Pick one end of the curve.
4 Pick the other end of the curve.
5 Press Enter to use the default Start Angle.
6 Press Enter to use the default Revolution Angle.
7 Save your model.
8 Experiment with adjusting the control points to see what happens.

9 Incremental Save your model.
10 Delete the surface.
11 Change the original curve and make another revolved surface.

12 Incremental Save your model.
Part Three:
3-D Modeling and Editing
Creating Deformable Shapes

When building models in Rhino, you should first determine which methods should be used for each part of the project. There are two basic ways to model in Rhino—free-form and accurate. Some models require more attention to exact dimensions because they might have to be manufactured or parts may have to fit together. Sometimes it is the shape of the object, not the accuracy that is important. These techniques can be merged together to create accurate, free-form shapes. This tutorial focuses only on the free-form, squishy aspect. The exact size and placement of the objects is not critical. The overall form is the main objective.

This exercise shows:

- Simple surface creation
- Surface rebuilding
- Control point editing
- Curve creation (drawing, projecting)
- Splitting surfaces with curves and surfaces
- Blending between two surfaces
- Lighting and rendering

When you model the rubber ducky, you will use similar modeling techniques for the head and the body. You will create spheres that will be deformed to make the shapes.

If you need to know more about control points and surfaces, search the Rhino Help index for “control points.”
Exercise 49—Creating a rubber duck

1. Start a new model. Save as Duck.
2. You can use layers to separate your parts, but for this model, it is not necessary. For more information about layers, look up “layer” the Rhino Help index.

Create the body and head shapes

The body and head of the ducky are created by modifying two spheres. The size and placement of the spheres does not need to be exact.

To create the basic shapes:

1. From the Solid menu, click Sphere, and then click Center, Radius.
2. Pick a point in the Front viewport.
3. Pick another point in the same viewport to create a sphere.
4. Repeat this procedure for the second sphere.

To make the spheres deformable:

1. Select both spheres.
2. From the Edit menu, click Rebuild.
3 In the **Rebuild Surface** dialog box, change the **Point Count** to 8 for both **U** and **V**. Change the **Degree** to 3 for both **U** and **V**.

Check **Delete Input**, clear **Current Layer** and **ReTrim**, and click **OK**.

The spheres are now deformable. Having more control points allows more control over smaller parts of the surface. A degree-three surface will have a smoother shape when deformed.

To modify the body shape:

1 Select the large sphere.
2 From the **Edit** menu, click **Control Points**, and then click **Control Points On**.
3 In the **Front** viewport select the control points near the bottom of the sphere. To window select, drag a box left to right around the control points.
4 From the **Transform** menu, click **Set Points**.
5 Make the **Set Points** dialog box look like this, and click **OK**.

![Set Points dialog box]

6 Drag the selected control points up.
This aligns all of the selected control points to the same world z-value (vertical in **Front** viewport), flattening the surface.

![Control points before and after scaling]

To scale the sphere shape:

1 Turn off control points and select the body shape.
2 From the **Transform** menu, click **Scale**, then click **Scale1D**.
3 Type 0 and press **Enter**.
4 With **Ortho** on, pick a point to the right in the **Front** viewport.
5 Pick a point further to the right in the **Front** viewport.
The body will be shaped more like an ellipsoid.
To reshape the chest and tail

1. Window select the control points at the top right of the body, and drag them to the right to bulge out the chest.

2. Window select the control points at the upper left edge of the body, and drag them up to form the tail. Notice in the Top viewport that two control points are selected, though in the Front viewport, it looks like only one is selected. This is because the second control point is directly behind the one you can see in the Front viewport.

To add control for further shaping the tail:

Before we start to edit the tail further, we will add an additional set of points to the tail portion of the body.

1. From the Edit menu, click Control Points, and then click Insert Knot.

2. Pick the body surface.
 A surface isocurve will be displayed. It will either be in the U or the V direction.

3. Type V and press Enter to change the direction if necessary.

4. Pick a point midway between the tail and the center of the body.
5 Press **Enter**.

A new set of points in the V direction have been added to the body.

6 Window select the control points at the upper part of the new isocurve, and drag them down to further form the tail and the body.

7 You can adjust the control points further until you get the shape you want.

8 **Save** your model.

To create the head:

1 In the **Front** viewport, select the small sphere.

2 From the **Edit** menu, click **Control Points**, and then click **Control Points On**.

3 Select the control points on the right side and drag them to begin forming the bill.
4 Window select the control points further back on the same isocurve and drag them forward to widen the bill.

5 Window select control points at the top of the bill and drag them down as shown below.

6 Press Esc to turn control points off.

Separate the bill from the head

For the final rendering, the bill must be a different color from the body. To do this, they must be separate surfaces. You can split a single surface into multiple surfaces many ways. The following technique is just one.

To split a surface with a curve:

1 In the Front viewport create a curve that looks like the illustration below.

2 Select the head.

3 From the Edit menu, click Split.

4 Select the curve you just created.

Notes:

Remember to use a window to select the control points. There may be multiple control points in the same location in this view.
5 Press Enter.
The bill and head are now separate surfaces so they can be rendered with different colors.

Create the duck's neck

The ducky needs a neck. You will first make an edge on the surface of the head and a corresponding edge on the surface of the body so you can create a blended surface between the two edges.

To trim the head:
1 Draw a Line across the bottom of the head.
2 Select the line you just created.
3 From the Edit menu, click Trim.
4 Select the bottom edge of the head.
The bottom of the head is trimmed.
To cut a hole in the body that matches the opening in the bottom of the head:

1. From the **Surface** menu, click **Extrude Curve**, and then click **Straight**.
2. Select the edge curve at the bottom of the head.
3. Press **Enter**.
4. Drag the extruded surface until it intersects the top of the duck body and click.

5. Select the cylindrical surface you extruded.
6. From the **Edit** menu, click **Trim**.
7. Select the part of the body on the inside of the extruded surface.
8. Press **Enter**.

 A hole will be created in the body.

9. **Delete** the extruded surface.
10. **Save** your model.

To create the blend surface between the head and body:

1. From the **Surface** menu, click **Blend Surface**.
2. Select the edge curve at the bottom of the head.
3 Select the edge of the hole in the body.

4 Press **Enter**.

5 In the **Blend Bulge** dialog box, click **OK**.
 A surface is blended between the body and the head.

6 **Save** your model.

To join the parts:

1 Select the body the blend surface and the back of the head.

2 From the **Edit** menu, click **Join**.
 The three surfaces are joined into one. The bill is left separate for rendering purposes.
To make an eye:

1. From the Solid menu, click Ellipsoid.
2. Toggle Ortho and Snap on to help.
3. Pick a point in the Front viewport.
4. Pick a point in the vertical direction.
5. Pick a point that creates an elliptical shape.
 The order of the first two points is important to correctly orient the isocurves on the surface.

6. Pick a point in the Top viewport that creates a round, flat ellipsoid.

To make the pupil for the eye:

To be able to assign a different color for the pupil of the eye, the ellipsoid surface has to be split into two parts. In this example we will use an isocurve to split the ellipsoid into two parts.

1. Select the ellipsoid.
2. From the Edit menu, click Split.
3 Click **Isocurve**.

4 Pick on the top part of the surface to define an isocurve for the split.

5 Press **Enter**.

 The surface is split at the isocurve.

6 Select the surface at the top of the ellipsoid.

7 From the **Edit** menu, click **Object Properties**.
8 In the **Properties** window, on the **Material** page, click **Basic**, click on the **Color** button, and select a color for the pupil of the eye, like black.

![Properties window]

9 From the **Render** menu, click **Render Preview**.

To group the parts of the eye:

1 Select the both eye surfaces.

2 From the **Edit** menu, click **Groups** and then click **Group**.

 The eye parts are grouped as one object.

To move the eyes to the surface of the head:

1 Select the eye group.

2 From the **Transform** menu, click **Orient**, and then click **On Surface**.

3 Snap to the center of the eye in the **Top** viewport.
4 Click on the head.
5 Change the Copy option to **No**.
6 Click the location for the eye.

7 **Mirror** the eye to the other side of the head.

Render a picture of the ducky

Rendering creates a “realistic” picture of your model with colors you assign. These render colors are different from the layer colors you might be using, which control the display in wireframe and shaded mode.

To render the ducky:

1 Select the beak.
2 From the **Edit** menu, click **Object Properties**.
3 In the **Properties** window, on the **Material** page, click **Basic** and click the **color swatch**.
4 In the **Select Color** dialog box, select a color for the beak, like orange.
5 Select the body.
6 From the **Edit** menu, click **Object Properties**.
7 In the **Properties** window, on the **Material** page, check **Basic** and select a color for the body, like yellow.
8 From the **Render** menu, click **Render**.

To place lights:
1 From the **Render** menu, click **Create Spotlight**.
2 Select a point in the middle of the model.
3 Drag the radius until it is approximately three times as large as the model.
4 Pick a point in the **Top** viewport while holding the **Ctrl** key down to activate elevator mode.
 In the **Front** viewport pick a point slightly above the object.
5 From the **Render** menu, click **Render**.
Modeling with Solids

Modeling solids in Rhino is easy. There are several commands that enable you create and edit solid objects.

Solids in Rhino are closed surfaces or polysurfaces that enclose a volume. Some of the solid primitives are closed single-surfaces carefully edge-matched, others are polysurfaces.

Rhino’s polysurface objects are deformable by using the new UDT (Uniform Deformation Technology) tools. You can also extract surfaces and deform the surfaces with control point editing like the last exercise.

In this part of the class we will focus on making some solids, separating the parts, making changes and then joining the parts back together to make a solid.

<table>
<thead>
<tr>
<th>Button</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Box</td>
<td>Draw a rectangular box from two diagonal corners and a height.</td>
</tr>
<tr>
<td></td>
<td>Box 3Point</td>
<td>Draw a box from two adjacent corners, a point on the edge across from them, and a height.</td>
</tr>
<tr>
<td></td>
<td>Sphere</td>
<td>Draw a sphere from a center point and a radius.</td>
</tr>
<tr>
<td></td>
<td>Sphere Diameter</td>
<td>Draw a sphere from the two ends of a diameter.</td>
</tr>
<tr>
<td></td>
<td>Sphere 3Point</td>
<td>Draw a sphere from three points on its surface.</td>
</tr>
<tr>
<td></td>
<td>Cylinder</td>
<td>Draw a solid cylinder from a center point, a radius, and a height.</td>
</tr>
<tr>
<td></td>
<td>Tube</td>
<td>Draw a solid tube from a center point, two radii, and a height.</td>
</tr>
<tr>
<td></td>
<td>Cone</td>
<td>Draw a solid cone from a base point, a base radius, and a height.</td>
</tr>
</tbody>
</table>
Exercise 50— Model a bar with text

In the following exercise we will make a solid primitive, extract some surfaces, rebuild a surface and deform it, join the new surfaces into a solid, fillet the edges, add text to a surface, and do a Boolean operation on the solid.

1. Start a new model using the **Small Objects - Millimeters** template. Save as **Bar**.
2. From the **Solid** menu, click **Box**, and then click **Corner to Corner, Height**.
3. For the **First corner** type **0,0** and press **Enter**.
4. For the **Length** type **15** and press **Enter**.
5. For the **Width** type **6** and press **Enter**.
6. For the **Height** type **1** and press **Enter**.
To edit the box:
1 From the **Solid** menu, click **Extract Surface**.
2 **Select** the top and both end surfaces, then press **Enter**.

3 Select the two ends and delete them.

4 **Select** the top extracted surface.
5 From the **Edit** menu, click **Rebuild**.
6 In the **Rebuild Surface** dialog box, set the **Point count** to 4 and the **Degree** to 3 for both U and V.
From the **Edit** menu, click **Point Editing**, then click **Control Points On**.

In the Right viewport, window select the middle points and drag them up approximately one unit.

Turn off control points.

Select all of the surfaces.

From the **Edit** menu, click **Join**.

The surfaces are joined making an open polysurface.

Select the polysurface.

From the **Solid** menu, click **Cap Planar Holes**.
To fillet the edges:

1. From the **Solid** menu, click **Fillet Edge**, then click Fillet Edge.
2. Set the **Current Radius** = 1.
3. Select the vertical edges, then press **Enter**.

4. Repeat the **Fillet Edge** command.
5. Set the **Current Radius** = 0.2.
6. Window select the entire bar to get the horizontal edges, then press **Enter**.

7. Make a copy of the bar and hide it.
 We will use the second bar for another technique later in the exercise.

To make solid text:

1. From the **Solid** menu, click **Text**.
2. In the **Text Object** dialog box, select a **Font**.
 Under **Create** click **Solids**.
 Under **Text size**, set the **Height** to 3.00 and the **Solid thickness** to 1.00, and then click **OK**.
3. Place the text in the Top
viewport.

4 Drag the text to the middle of the bar and click.

5 In the Front or Right viewport, drag the text until it protrudes through the top surface.

To engrave the text in the bar:
1 Select the bar.
2 From the Solid menu, click Difference.
3 Window select all of the text, press Enter.

The text is embossed into the bar.

Using a model for illustration
Occasionally you will want to use your 3D model for illustration purposes. In this case we’re going to divide the top surface into pieces. Each piece can then be assigned a material property. When the part is rendered or displayed in a rendered viewport, it will appear like a label.
To make a label:

1. **Hide** the finished bar and **Unlock** the copy of the bar.
2. From the **Solid** menu, click **Extract Surface**.
3. Select the top surface, then press **Enter**.

4. Select the lower part of the bar and **Lock** it.
5. Make the **Top** viewport active.
6. From the **Solid** menu, click **Text**.
7. In the **Text Object** dialog box, under **Create**, click **Curves**, check Group objects and click **OK**.

8. Place the text in the **Top** viewport.

To split the top surface of the bar with the text:

1. Select the extracted top surface.
2 From the **Edit** menu, click **Split**.
3 Select the text curves, , then press **Enter**.
 Since the Group objects box was checked when you created the text, you can pick all of the text by clicking on one element.
 The curves have split the surface. Each part of the text is a separate surface.

4 From the **Edit** menu, click **Select Objects**, then click **Curves**.
 This will select the curves you used to split the surface.
5 From the **Edit** menu, click **Visibility**, then click **Hide** to hide the curves.

To change the render color of the text:
1 Select the text surfaces.
 Remember to leave the center of letters like R and O out of the selection set.
2 From the **Edit** menu, click **Group**, then click **Group**.
 The text surfaces are now grouped for easier selection.
3 Select the group
4 In the **Properties** window, on the **Material** page, click **Basic** and select a color for the text, like red.
Right click on the **Perspective** viewport title.

From the **Render** menu, click **Rendered Display**. The letters render in a different color.

To emboss the text in the bar:

1. Click in the **Top** viewport.
2. From the **Edit** menu, click **Select Objects**, then click **Previous Selection**. This selects the text surfaces again.
3. From the **Solid** menu, click **Extrude Surface**, then click **Straight**.
4. Type **.2** and press **Enter**. The surfaces are extruded perpendicular to the active construction plane.
Notice that the top of the text follows the curvature of the original surface.
Creating Surfaces

A Rhino surface is similar to a piece of stretchy fabric. It can take on many different shapes. Surfaces are bounded by curves called edges. To visualize the surface shape Rhino displays a grid of isoparametric curves (isocurves) on the surface. Surfaces have an area, their shape can be changed by moving control points, and they can be meshed.

<table>
<thead>
<tr>
<th>Button</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SrfPt</td>
<td>Creates a surface by picking three or four points in space for corners.</td>
</tr>
<tr>
<td></td>
<td>EdgeSrf</td>
<td>Creates a surface by selecting two, three, or four existing curves whose ends meet exactly.</td>
</tr>
<tr>
<td></td>
<td>PlanarSrf</td>
<td>Creates a surface from planar curves that enclose an area.</td>
</tr>
<tr>
<td></td>
<td>Patch</td>
<td>Creates a surface that approximates a set of curves and/or point objects.</td>
</tr>
<tr>
<td></td>
<td>Revolve</td>
<td>Revolves a curve around an axis to create a surface.</td>
</tr>
<tr>
<td></td>
<td>Loft</td>
<td>Creates a surface from shape curves; the normal, loose, and tight options make a surface with no creases as it passes over the shape curves. The StraightSections option creates a surface with creases at each shape curve and straight sections between the shapes curves.</td>
</tr>
<tr>
<td></td>
<td>Sweep1</td>
<td>Creates a surface from shape curves that follow along a rail curve that defines one edge of the surface.</td>
</tr>
<tr>
<td></td>
<td>Sweep2</td>
<td>Creates a surface from shape curves that follow along two rail curves that define two edges of the surface.</td>
</tr>
<tr>
<td></td>
<td>FilletSrf</td>
<td>Creates a fillet or round between two surfaces.</td>
</tr>
</tbody>
</table>

Notes:
Button	Command	Description
BlendSrf | Makes a smooth surface between two existing surfaces
RailRevolve | Revolves a shape curve holding one end along a rail curve. This command is very useful for putting a smooth end cap on an irregularly shaped surface.
Extrude | Extrudes a curve perpendicular to the construction plane with option to taper the surface with a draft angle.
Extrude AlongCurve | Extrudes a curve following along a second curve.
Extrude ToPoint | Extrudes a curve to a point.
Plane | Creates a rectangular planar surface parallel to the construction plane from two diagonal points.
Plane 3Point | Creates a rectangular planar surface from 3 points.
Plane Vertical | Creates a rectangular planar surface from 3 points that is vertical to the construction plane.

Exercise 51—Basic techniques for making surfaces

1. Start a new model. Save as **Surfaces**.

 In this exercise, you will model some simple surfaces.

2. Turn on **Snap** and **Planar**.

3. From the **Surface** menu, click **Plane**, then click **Corner to Corner**.

4. In the **Top** viewport, at the **First corner of plane** (3Point Vertical Center Deformable) prompt, pick a point.

5. Pick another point to make a rectangular plane.
To create a vertical plane:

1. From the **Surface** menu, click **Plane**, and then click **Vertical**.
2. Snap to the **End** point at the right side of the surface.
3. Snap to the other **End** point at the right side of the surface.
4. Drag your cursor up and pick.

To create a plane from 3 points:

1. From the **Surface** menu, click **Plane**, and then click **3 Points**.
2. Snap to the endpoint at the left of the first surface.
3. Snap to the other endpoint at the left side of the first surface.
4. Pick a point in the **Front** viewport that is angled to the left and the same height as the vertical surface.

To create a plane from corner points:

1. From the **Surface** menu, click **Corner Points**.
2. Snap to an endpoint at the edge of the first surface (1).
3. Snap to the endpoint at the edge of the first surface (2).
4. Snap to an endpoint at the edge of the third surface (3).
5 Snap to the other endpoint at the edge of the third surface (4). A surface will be created with corners at the points you selected.

To create a plane from edge curves:
1 Draw a curve in the Top viewport that starts and ends at the top of the two vertical surfaces as shown below. Planar mode keeps this curve on the same plane as the surface corners.
2 From the Surface menu, click Edge Curves.
3 Select the three surface edges and the curve you created. A surface is created.

To create a surface from planar curves:
1 From the Surface menu, click Planar Curves.
2 Select the top edge of a surface you just created.
3 Select the other three edges and press **Enter**. A surface is created.

Exercise 52—Extruding surfaces

In this exercise, you will be creating a cordless phone using extrusions. To aid in organizing the model, surface and curve layers have been created. Make sure you change layers as you are making the extrusions.

1 **Open** the model *Extrude.3dm*.
2 Select the curve (1) as shown below.
3 From the **Surface** menu, click **Extrude Curve**, and then click **Straight**.
4 Type *-3.5* and press **Enter**.

 If the object being extruded is a planar curve, the curve is extruded perpendicular to the plane of the curve.

5 Press **Esc** to unselect the curve.
6 Change to the **Bottom Surface** layer.
7 Repeat this process for the other curve (2).

To extrude a curve along another curve:
1 Change to the **Top Surface** layer.
2 Select the curve on the left (3).
3 From the **Surface** menu, click **Extrude Curve**, and then click **Along Curve**.
4 Select the path curve (4) near its right end.
The curve is extruded along the path of the secondary curve.

5 Change to the **Bottom Surface** layer.
6 Repeat this process for the other curve (5).

Notes:

If you do not get the answer you expected, undo and try picking near the other end of the path curve.
To extrude a curve with a taper (draft angle):

1. Change to the **Top Surface** layer.
2. Select the curve on the right (1).
3. From the **Surface** menu, click **Extrude Curve**, and then click **Tapered**.
4. Click **DraftAngle**.
5. Type 3 and press **Enter**.
6. Type .375 and press **Enter**.

 The curve is extruded with a three-degree draft angle in the positive direction on the y-axis.

7. Change to the **Bottom Surface** layer.
8. Select the same curve.
9. From the **Surface** menu, click **Extrude**, and then click **Tapered**.
10. Type -1.375 and press **Enter**.

 The curve is extruded with a three-degree draft angle in the negative direction from the previous extrusion.

To create a surface from a planar curves:

1. Change to the **Top Surface** layer.
2. From the **Surface** menu, click **Planar Curves**.
3. Select the edge curves that bound the openings of the tapered extrusion at the top.
4 Press **Enter**.
A surface is created at the end.

5 Change to the **Bottom Surface** layer.
6 Repeat this process for the other end.

7 Select all of the top surfaces.
8 From the **Edit** menu, click Join.
9 Repeat this for the bottom surfaces.

To create an extruded surface on both sides of a curve:
1 Turn on the **Extrude Straight-both sides** layer.
2 Select the freeform curve as shown.

3 From the **Surface** menu, click **Extrude Curve**, and then click **Straight**.
4 Click **Both sides**.
5 In the **Front** view drag so that it extends past the object and pick. The curve is extruded symmetrically from the curve.

To trim the extruded surface:
1. Select both the **Top** (1) and **Bottom** (2) polysurfaces.
2. From the **Edit** menu, click **Trim**.
3. Pick the outer edge (3) of the extruded surface.

To trim the polysurfaces:
1. Select the trimmed extruded surface (1).
2. From the **Edit** menu, click **Trim**.
3. Pick the left edge of the top (2) and bottom (3) polysurfaces.
To split the trimmed surface:
1. Select the trimmed extruded surface (1).
2. From the Edit menu, click Split.
3. Click Isocurve.
4. Type V and press Enter.
5. Snap to the intersection where all three surfaces touch.

6. Press Enter.
7. Select the left part of the split surface.
8. From the Edit menu, click Layers, then click Change Object Layer.
9. In the Layer for objects dialog box, select Top Surface, and then click OK.
10. Make the Top Surface layer current and turn off the Bottom Surface layer.

To join the surfaces:
Next you will join the surface and the polysurface for the Top and the Bottom of the handset.
1. Select the surface and the Top polysurface
2. From the Edit menu, click Join.
3 Repeat this process for the Bottom polysurface. The surfaces are trimmed and joined.

4 Use the **FilletEdge** command (Solid menu > Fillet Edge) with a radius of 0.2 to round the edges.

To create an extruded surface from a curve to a point:

1. Turn on the Extrude to a point layer.
2. Select the U-shaped curve.
3. From the **Surface** menu, click **Extrude Curve**, and then click **To Point**.
4. Snap to the point object near the top surface. The curve is extruded to the point.
5 Use the **BooleanDifference** command (Solid menu > Difference) to remove the surface from the top of the phone.

6 Repeat these steps for the bottom part of the phone.

7 Save your model as **Phone**.

To create the buttons:

1 Turn on the **Curves** for **Buttons** layer.

2 In the **Front** view, window select the first column of buttons.

 Three curves are selected.

3 From the **Solid** menu, click **Extrude Planar Curve**, then click **Straight**.

4 Type \(-.2\) and press **Enter**.
5 Repeat these steps for the other columns of buttons.

6 Use the **FilletEdge** command (Solid menu > Fillet Edge) with a radius of **.05** to round the edges. The button edges are rounded.

7 **Save** your model.

Exercise 53—Lofted surfaces

1 **Open** the model **Loft.3dm**.
2 Window select all of the curves.
3 From the **Surface** menu, click **Loft**.

A surface is fitted over the curves.

![Loft Options dialog box](image)

4 In the **Loft Options** dialog box, switch **Style** to **Straight sections**, then click **Preview**.

A surface is fitted through the curves, but the sections are straight between the curves.

![Loft Options dialog box](image)

5 In the **Loft Options** dialog box, switch **Style** to **Loose**, then click **Preview**.

A surface is created that uses the same control points as the curves. The surface follows the curves more loosely.

Use this option when you want the surface to conform to the control points of the input curve.
6 In the **Loft Options** dialog box, switch **Style** to **Normal**, then click **OK**.
7 **Mirror** the surface to create the other half and **Join** the two halves.

To make a seat:

1 Turn the **Hull Curves** layer off and turn the **Seat Curves**, and **Seat** layers on.
2 Make the **Seat Curves** layer current.
3 In the **Front** view, select the rounded rectangles.
4 From the **Curve** menu, click **Curve From Objects**, and then click **Project**.
5 Select the hull.
 The curves will be projected to both sides of the hull surface.
6 Select the curves on the surface.
7 From the **Surface** menu, click **Loft**.
8 Press Enter.
A surface is fitted over the curves that fits exactly with the shape of the hull.

To create section curves from the surfaces:
1 Select the hull.
2 Change to the Sections layer.
3 From the Curve menu, click Curve From Objects, and then click Section.
4 In the Top viewport, pick a point to the left at the center of the hull.
5 With Ortho on, drag a line to the right and pick.
A curve is generated on the surface. Repeat this at various locations.

To create contour curves across the hull surfaces:
1 Select the hull.
2 Change to the Contours layer.
3 From the Curve menu, click Curve From Objects, and then click Contour.
4 Snap to the left end of the canoe.
5 Press \textbf{Enter}.
A curve is generated every foot along the hull.

\textbf{To create an edge curve from the surfaces:}

\begin{enumerate}
\item Change to the \textbf{Top Rail} layer.
\item From the \textbf{Curve} menu, click \textbf{Curve From Objects}, and then click \textbf{Duplicate Edge}.
\item Pick the top edge of the hull.
\item Pick the other top edge and press \textbf{Enter}.
\end{enumerate}

Two curves are generated at the edges of the hull.

5 Turn off the \textbf{Hull} layer.
You have a wireframe of curves that duplicate the hull surface.
Exercise 54—Revolved surfaces

1. Open the model Revolve.3dm.
2. Select the free-form curve
3. From the Surface menu, click Revolve.
4. Select one end of the curve for the start of revolve axis.
5. Select the other end of the curve the end of revolve axis.

6. Press Enter to use the default Start Angle.
7. Press Enter to use the default Revolution Angle.

A surface is revolved around the axis line.
Exercise 55—Using a rail revolve

Rail Revolve lets you revolve around an axis and along a path curve.

To create a rail revolve:

1. Open the model Rail Revolve.3dm.
2. Select the conic shaped curve.
3. From the Surface menu, click Rail Revolve.
4. Select the path curve.

5. Select one end of the axis line.
6. Select the other end of the axis line.

A surface is revolved around the axis that follows along the curve at the end of the object.

7. Turn the Bowl layer on and other layers off.
8. Use Rail Revolve to make a bowl.
Exercise 56—Using 1-rail sweeps to create surfaces

1. Open the model 1 Rail Sweep.3dm.
2. Select the three curves on the left.

3. From the Surface menu, click Sweep 1 Rail.
4. Press Enter.

5. In the Sweep 1 Rail Options dialog box, click OK.
 The two cross section shapes are blended along the rail curve to form the surface.
To create a 1-rail sweep to a point:

1. From the **Surface** menu, click **Sweep 1 Rail**.
2. Select the free-form curve on the right.
3. Select the circle.
4. Click **Point**.
5. Select the other end of the free-form curve.

6. In the **Sweep 1 Rail Options** dialog box, then click **OK**.

The cross-section will sweep to a point to form the surface.
Exercise 57—Using 2-rail sweeps to create surfaces

- Open the model 2 Rail Sweep.3dm.

To create the base part:

1. Change to the **Base Surface** layer.
2. From the **Surface** menu, click **Sweep 2 Rails**.
3. Select the two profile curves.
4. Select the cross-section curves.
5. Press **Enter**.
6. Press **Enter**.
In the **Sweep 2 Rails Options** dialog box, click **OK**.
A surface is created whose edges match the rail curves.

To create the housing:

1. Turn the **Housing Surface**, **Housing Curves**, and **Mirror** layers on.
2. Make the **Housing Surface** layer current.
3. From the **Surface** menu, click **Sweep 2 Rails**.
4. Select the two rail curves.
5. Select the outer edge of the cylinder, and then press **Enter**.
6 Press **Enter**.

7 In the **Sweep 2 Rails Options** dialog box, click **OK**.
 A surface is created.

To join the two parts:
1. Select the base and the housing surfaces.
2. From the **Solid** menu, click **Union**.
 The two parts are joined and trimmed.
3 Use the **FilletEdge** command (Solid menu > Fillet Edge) with a radius of **.25** to round the intersecting edge.

Exercise 58—Using a network of curves to create surfaces

1 **Open** the model **Networksurf.3dm**.
2 From the **Surface** menu, click **Curve Network**.
3 Select the two edge curves and the cross-section curves, and press **Enter**.
4 In the **Surface From Curve Network** dialog box, change the edge matching to **Curvature**, click **OK**. A surface is created that has curvature continuity with the other two surfaces.

Exercise 59— Practice using one-rail sweeps:

In this exercise you use one rail sweeps to make an end table with free-form tapered legs.

To create the legs:

1. **Open** the model **Table.3dm**.
2. From the **Surface** menu, click **Sweep 1 Rail**.
3. Select the path curve for the leg.
4. Select the shape curve for both ends of the leg.
5. Press **Enter**.
6 Press **Enter**.

![Diagram](image1.png)

7 In the **Sweep 1 Rail Options** dialog box, click **OK**.

The table leg is created. Note the nice transition from one cross-section curve to the other.

![Diagram](image2.png)

To create the brace:

1 Change to the **Braces** layer.
2 Repeat the previous process to create the brace.

![Diagrams](image3.png)

To create the top:

1 Change to the **Top** layer.
2 From the **Surface** menu, click **Sweep 1 Rail**.
3 Select the ellipse.
4 Select the shape curve.

![Diagrams](image4.png)
5 Press **Enter**.

6 In the **Sweep 1 Rail Options** dialog box, click **OK**. The surface for the rim of top is created.

To finish the table:

1 Select all of the surfaces you created.
2 From the **Solid** menu, click **Cap Planar Holes**. Six caps were created.
3 Use **Mirror** to copy the brace and the leg to finish the model.

Mirror them around 0,0 in the **Top** viewport.

Exercise 60—Creating a toy hammer:

In this exercise you will use most of the techniques that you’ve learned in the previous sessions.

Some models require more attention to detail. This is an example of a model that requires precise modeling techniques. This exercise also requires a number of different surface creation techniques. The technical drawing is included to help you create a very precise model.
1 **Open** the model **Hammer.3dm**.

The model already has the construction curves describing the overall shape and size of the model.

In addition the following layers have been created: **Construction Lines, Curves, Handle, Tang, Head, Hole, Cutout**, and **Claw**. Use the appropriate layer when constructing the model.

2 **Draw outlines for the hammer in the Top viewport.**

Drawing outlines helps while drawing the curves. You can either draw lines, polylines, or rectangles to create the outlines. Use the dimensions on the technical drawing to get accurate outlines.

Notes:
To create the claw:

When modeling the shape of the claw, you will use circles, arcs, and curves. You can trim the circles and arcs and then join them together to create a closed curve. You can rebuild the curve and adjust the control points to get a more sculptural shape.

1 Change to the **Curves** layer

2 Draw a curve defining the shape of the claw in the **Top** viewport.

 You can use a free-form curve or use a combination of arcs and circles that are trimmed and joined to create the curve. Following is a step-by-step approach to creating the curve for the claw part of the hammer using arcs and circles.

 Start by drawing two circles.

3 Use the **Circle** command (Curve menu > Circle > Tangent to 3 curves) to create a circle at the lower end of the claw.

 Draw the circles tangent to the construction geometry.

4 Use the **Circle** command (Curve menu > Circle > Tangent, Tangent, Radius) to create a circle at the upper end of the claw that is tangent to the upper right corner with a 4 mm radius.

 Draw the circles tangent to the construction geometry.
5 Use the **Arc** command (Curve menu > Arc > Tangent, Tangent, Radius) to create arcs that are tangent to the two circles.

6 Use the **Trim** command (Edit menu > Trim) to trim the inside part of the circles.

7 Use the **Join** command (Edit menu > Join) to join the arc segments.

8 Change to the **Claw** layer.

9 Select the joined segments.

10 Use the **ExtrudeCrv** command (Solid menu > Extrude Planar Curve > Straight) to extrude the curve on both sides of the construction plane.
To create the head:

1. Change to the **Curves** layer.
2. Use the **Curve** command (Curve menu > Free-form > Control Points) to create the curve for the cross-section of the head.

 Make sure the curve intersects the claw part. This makes joining the two pieces easier.

 ![Image](image.png)

3. Change to the **Head** layer.
4. Use the **Revolve** command (Surface menu > Revolve) to revolve the curve.

 Use the midpoint of the construction line for the revolve axis.

 ![Image](image.png)

5. Save your model.

To create slot for the claw part of the hammer:

1. Use the **Curve** command (Curve menu > Free-form > Control Points) to draw a curve for the slotted part of the claw.

 Make sure the curve is symmetrical.

 ![Image](image.png)
2 Use the **Line** command (Curve menu > Line > Single Line) to draw a line between the endpoints.
3 Use the **Join** command (Edit menu > Join) to join the curve and the line.
4 Drag the closed curve closer to the claw.
5 Use the **Rotate** command (Transform menu > Rotate) to rotate the curve to align more closely with the curve of the claw.

6 Change to the **Claw** layer.
7 Use the **ExtrudeCrv** command (Solid menu > Extrude Planar Curve > Straight) to extrude the curve through the claw.

8 Save your model.
9 Use the **BooleanDifference** command (Solid menu > Difference) to subtract the slot from the claw.
To finish the claw:

1. Use the **BooleanUnion** command (Solid menu > Union) to join the head with the claw.

2. Use the **FilletEdge** command (Solid menu > Fillet Edge) to make the fillets around the top and bottom of the claw, the slot, and the intersection between the head and the claw.

3. Save your model.

To create the shape curve for the tang and the handle:

Create the shape curve for the tang in the **Right** viewport. This curve will also be used for the handle.

1. Change to the **Curves** layer and turn on **Ortho**.

2. Use the **Curve** command (Curve menu > Free-form > Control Points) to draw a curve for the upper cross-section of the tang.

 Make sure the curve is symmetrical.

3. Save your model.
To create the tang:

1. Use the **Curve** command (Curve menu > Free-form > Control Points) to draw one of the curves for the tang of the hammer. Make sure that it intersects the claw.

2. Use the **Mirror** command (Transform menu > Mirror) to create the other curve.

3. Change to the **Tang** layer.

4. Use the **Sweep2** command (Surface menu > Sweep 2 Rails) to make the surface.

To finish the tang:

1. Use the **Mirror** command (Transform menu > Mirror) to make the other half of the tang.

2. Select both halves.

3. Use the **Join** command (Edit menu > Join) to join the two surfaces.

4. Select the joined surfaces.
5 Use the **Cap** command (Solid menu > Cap Planar Holes) to make the tang a closed polysurface.

![Diagram of a hammer head with tang and claw]

6 **Save** your model.

To finish the hammer head:

1 Select the tang and the claw.

2 Use the **BooleanUnion** command (Solid menu > Union) to join the tang with the claw and the head.

3 Use the **FilletEdge** command (Solid menu > Fillet Edge) to make the fillets at the intersection between the tang and the claw.
 The edge has a round on it.

![Diagram of a hammer head with tang and claw]

4 Save your model.
To create the handle:

1. Change to the **Curves** layer.
2. Use the **Curve** command (Curve menu > Free-form > Control Points) to draw a curve for the top edge of the handle. Make it start at the endpoint of the tang profile curve and end on the centerline.

3. Use the **Mirror** command (Transform menu > Mirror) to make the other half.
4. Change to the **Handle** layer.
5. Use the **Sweep2** command (Surface menu > Sweep 2 Rails) to make the surface using the tang curve as the profile curve. A surface is created.

6. Select the surface.
7. Use the **Mirror** command (Transform menu > Mirror) to make the other half.
8. Select both halves.
9 Use the **Join** command (Edit menu > Join) to join the two surfaces.

10 Use the **Cap** command (Solid menu > Cap Planar Holes) to cap the open end.

11 Save your model.

To create the hole for the handle:

1 Use the **Circle** command (Curve menu > Circle > Center, Radius) to make a circle 25mm from the end of the handle.

 You may have to draw a construction line to help you position the circle.

2 Use the **ExtrudeCrv** command (Solid menu > Extrude Planar Curve > Straight) to extrude the curve on both sides of the construction plane.

 Make sure the extrusion intersects both sides of the handle.

3 **Save** your model.

4 Use the **BooleanDifference** command (Solid menu > Difference) to subtract the hole from the handle.
5 Use the **FilletEdge** command (Solid menu > Fillet Edge) to make the fillets at the edges of the hole. The edges have rounds on them.

6 **Save** your model.
Exercise 61—Creating a squeeze bottle:

Some models require more attention to detail. This is an example of a model that requires precise modeling techniques. This exercise also requires a number of different surface creation techniques.

The technical drawing is included to help you create a very precise model.

1. Start a new model. Use the *Inches.3dm* template.
2. Save as *Bottle*.
3. Make the following layers: *Construction, Curve, Bottle, BottleTop, Threads, Cap1, Cap2, and CapTop*.
4. Change to the *Construction* layer.
Create the bottle shape

To create the bottle shape, you will draw curves that defines the bottom and top edge, and then draw a curve that represents the side shape. You will then create a surface from these defining curves.

To draw the construction curves:

1. Use the **Rectangle** command (Curve menu > Rectangle > Corner to Corner) to make rectangles in the Front and Right views that define the overall size of the bottle shape of the bottle. The rectangles will be used as guides for building the bottle curves.

2. Use the **Lock** command (Edit menu > Visibility > Lock) to lock the two rectangles.

3. Use the **Ellipse** command (Curve menu > Ellipse > From Center) to make the shape for the bottom of the bottle.

4. Snap to the intersection of the rectangles for the center of the ellipse.

5. Use the **Move** command (Transform menu > Move) to move the ellipse up .25 in the Front view.
6 Use the Circle command (Curve menu > Circle > Center, Radius) to draw a circle for the top shape of the bottle.

7 Snap to the intersection at the top of the rectangles for the center of the circle.

To draw the edge curve:

1 Change to the Curve layer.

2 Use the Curve command (Curve menu > Free-Form > Control Points) to define the edge of the bottle in the Front viewport.
 Use the rectangle and object snaps to help you establish the correct size. The curve will be used to create the surface of the bottle.

To create the surface for the bottle:

1 Change to the Bottle layer.

2 Use the Sweep2 command (Surface menu > Sweep 2 Rails) to make the bottle surface. The ellipse and the circle will be the rails. The curve you created will be the shape curve.
3 In the **Sweep 2 Rails Options** dialog box, click **OK**.

![Sweep 2 Rails Options](image)

Cap the top and bottom

If you close the bottle, thereby creating a solid, Rhino can calculate the bottle's volume. If you were creating this bottle in real life, knowing the volume would be important. Normally, a bottle would have to be designed to hold a specified volume.

If the edges of the remaining open surfaces are planar curves, you can use the Cap command to close them. The open edges on the bottle are the top circle and the bottom ellipse, and they are planar.

To cap the top and bottom:

1. **Select the surface.**
2. Use the **Cap** command (Solid menu > Cap Planar Holes) to close the holes.

![Cap Planar Holes](image)

Flatten the sides

You will notice in the **Right** viewport that the bottle bulges too much. You will create custom surfaces to trim the bulges away.

To create the trimming surface:

1. Change to the **Curve** layer.
2. In the **Right** viewport, draw two curves to approximate the shape at the edge of the bottle and the middle of the bottle.
3 The technical drawing gives dimensions for these curves, but for this exercise you can use the construction rectangles to help. If you would like to go further, try to figure out on your own how to draw the curves to the exact specifications.

4 In the **Front** viewport move the curve with more curvature to align with the edge of larger rectangle.

5 **Mirror** the edge curve to the opposite side.

6 Select the three curves you just created.

7 Use the **Loft** command (Surface menu > Loft) to make the cutting surface.
8 In the **Loft Options** dialog box, click **OK**. A lofted surface intersects the bottle.

9 **Mirror** the surface to the other side of the bottle.

10 Save your model.

To remove the surface from the bottle:

1 Change to the **Bottle** layer.

2 Use the **Dir** command (Analyze menu > Direction) to check the surface normal direction. Flip the normals if necessary.

 The normals should be pointing toward the center of the bottle.

3 Select the bottle.
4 Use the **BooleanDifference** command (Solid menu > Difference) to subtract the two lofted surfaces from the bottle.
The bottle is now a closed solid.

5 **Use the FilletEdge** command (Solid menu > Fillet Edge) to round off the sharp edges by adding a smooth radius between the edges.

Create the bottle's top

To create the bottle throat, you are going to revolve a profile curve to create the surface, and then add threads.

To create the profile curve:

1 Change to the **Curve** layer.
2 In the **Front** viewport, use the **Lines** command (Curve menu > Line > Line Segments) and the **Arc** command (Curve menu > Arc > Center, Start, Angle) to create a profile curve for the outside and the inside of the top.
3 Use the drawing below to draw the correct dimensions.

4 Begin the drawing anywhere in the viewport.
 You will move it to a precise location after it is made.

5 Use the Join command (Edit menu > Join) to join the segments together.

Tip When drawing line segments, you can use object snaps, the distance constraint, and ortho to draw precisely. For example, for the first line type .5,7.25 for the starting point, then simply type .25 to constrain the line to .25 units. Turn Ortho on and drag the line to the right and click. The line stops at .25 units from the beginning of the line. For the vertical line on the left, use the End object snap to pick the end of the first line, type .375 to constrain the distance, and drag the line up.
6 Use the **Move** command (Transform menu > Move) to move the profile from the midpoint of the bottom edge to the quadrant of the top of the bottle.

7 Change to the **Bottle Top** layer.

To create the top surface:

1 Select the profile curve.
2 Use the **Revolve** command (Surface menu > Revolve) to make the surface.
3 Type **0** and press **Enter** for the first axis point.
4 Turn **Ortho** on and pick another point up or down from the first point for the other axis point.
5 Press **Enter** to use the default **Start Angle**.
6 Press **Enter** to use the default **Revolution Angle**.

The top is created.

Note: Practice additional surface modeling techniques by creating threads on the bottle top and the caps for the model. Use the technical drawing to help.
Adding the threads

To add the threads, you will sweep a profile shape along a path drawn with the Helix command.

To create the path curve helix:

1. Change to the Curve layer.
2. From the Curve menu, click Helix.
3. Snap to the center point at the bottom of the area to be threaded.
4. Snap to the center at the top of the area to be threaded.
5. Click Turns.
6. Type 1.5 and press Enter.
7. Pick a point near the edge that is slightly smaller than the outside edge of the area to be threaded.
To draw the thread profile:

1. Draw a triangle using the **Polygon** command for the thread as shown below.

 ![Triangle](image1)

2. Select the triangle you created.

3. From the **Transform** menu, click **Array**, and then click **Along Curve**.

4. Select the helix near the bottom.

5. In the **Array Along Curve Options** dialog, change the **Number of items** to 5 and click **Roadlike** and then click **OK**.

 ![Array Options](image2)

6. Click in the **Top** viewport.

 It might be a good idea at this point to change your perspective view so you can see the profile curves more easily.
To create the thread surface:

1. Change to the **BottleTop** layer.

 You can see the helix and profile curves easier if you **Hide** the bottle top at this point.

 Use the **Sweep1** command to create a surface that starts a point at one end of the helix, goes through each profile, and ends at a point at the other end of the helix.

2. From the **Surface** menu, click **Sweep 1 Rail**.

3. Select the helix.

4. To start the surface at a point, at the **Select cross-section curves** (Point) prompt, type **P** and press **Enter**.

5. Use the **End** object snap to pick one end of the helix.

6. Select the profile curves in order.

7. To end the surface at a point, at type **P** and press **Enter**.
8 Use the **End** object snap to pick the other end of the helix.

9 Press **Enter**.

10 In the **Sweep 1 Rail Options** dialog box, change the **Style** to **Roadlike Top**, and click **OK**.

11 **Show** the bottle.

12 Select the helical thread and the bottle top.

13 Use the **BooleanUnion** command (Solid menu > Union) to join the thread and the bottle top.
Rhino supports many different import and export formats, making it possible to model in Rhino and then export your model to downstream processes. For a complete list of import and export options refer to Rhino Help. Search the index for “import and export.”

Importing and Exporting Rhino File Information

When you export to a format like 3DS, STL or DWG, Rhino has to convert from smooth NURBS surfaces to a polygon mesh representation made of triangles. To do a good approximation of the curved surfaces, Rhino can sometimes use a lot of polygons. The density of triangles can be adjusted when exporting. You can create a mesh object and export it, or Rhino can create the mesh during the export process.

There are two methods to export models to other formats. You can “Save As” and choose a specific export format to export an entire model. You can select some objects and “Export Selected” then choose a specific export format to export a portion of the model. In the following exercise you will use the “Save As” method to export three of the most common file formats.

Exercise 62— Exporting models

To export a model to a mesh format:

1. **Open** the model *Export.3dm*.
2. From the **File** menu, click **Save As**.
3. In the **Save** dialog box, change the **Save as type** to **Stereolithography (*.stl)**.
4. In the file name box type **Export** and click **Save**.
5 In the **STL Mesh Export Options** dialog box, set the Tolerance to **0.01**, and click **Preview**.

![Flat shade of the mesh.]

6 Set the Tolerance to **0.1**, click **Preview**, and then click **OK**.

![Flat shade of the mesh.]

7 In the **STL Export Options** dialog box, select **Binary**, check **Export open objects**, and click **OK**. Detailed mesh controls are discussed in more depth in the Level 2 training class.
To export a model to IGES:

1. From the **File** menu, click **Save As**.
2. In the **Save** dialog box, change the **Save as type** to **IGES (*.igs)**.
3. In the **IGES Export Options** dialog box, select **Pro E Windows solids** as the IGES type, click **Detailed Controls**.
 Detailed controls allows the user more input.

4. Click **Cancel** to terminate, or **OK** to create the IGES file.

To export a model to STEP:

1. From the **File** menu, click **Save As**.
2. In the **Save As** dialog box, change the **Save as type** to **STEP (*.stp, *.step)**.
3. In the **STEP Options** dialog box, use the default setting.
Rendering

Rendering is available for showing your model as if it was photographed. While the Rhino renderer may be good enough for much of your work, use another rendering program such as Rhino’s Flamingo plug-in for higher quality results. Flamingo is available as a plug-in to Rhino 2.0. Visit www.flamingo3d.com for more information.

Rhino’s renderer uses color, spotlights, displays shadows, and does antialiasing. It also allows the attachment of textures and bump maps. In this exercise we will focus on the full rendering capability.

Exercise 63— Practice rendering a model

1 Open the model Render.3dm.
2 From the Render menu, click Current Renderer, then click Rhino Render.
3 Right click on the Perspective title bar, then click Rendered display.

The viewport mimics but does not exactly duplicate what you will get in a Render.
To assign a color to the handle:

1. In the **Layers** dialog box, click on the **Materials** column for the **Handle** layer.

2. In the **Material** dialog box, click **Basic**, then click the **Color** swatch.

3. Change the **Gloss finish** setting to **90**, then click the **Color** swatch.

4. In the **Select Color** dialog box, select a color, like **Red**, and click **OK**.

5. Repeat the steps above to assign a material to the **Blade** layer.
6 From the **Render** menu, click **Render**.
A display window appears with the current viewport rendered in colors, but it will probably lack detail. You can close the Display Window without disturbing your model. Placing lights will add depth and detail to the rendered image.

![Screwdriver render](image)

To place a light:
Start with a standard lighting scheme. You can experiment to develop your own lighting schemes later.

1 Zoom out in the **Top** and the **Front** viewport.
2 Change to the **Lights** layer.
3 From the **Render** menu, click **Create Spotlight**.
4 Pick a point near the center of the screwdriver and slightly above it in the **Front** viewport.

![Front viewport](image)

5 Pick a point so that the circle is larger than the entire screwdriver in the **Top** viewport.

![Top viewport](image)

6 Hold down the control key, and pick a point below and to the left in the **Top** viewport.
This starts elevator mode.

7 Click above the object in the Front viewport. This will be your main light.

8 Click in the Perspective viewport.
9 From the Render menu, click Render. The image has some highlights and shadows.

To place a second light:
1 Zoom out in the Top viewport.
2 From the Render menu, click Create Spotlight.
3 Pick a point to the right and slightly below the screwdriver in the Top viewport.
4 Pick a point so that the circle covers about half of the screwdriver in the Top viewport.
5 Click to the right and slightly below the object in the Top viewport.
This will be your secondary (fill) light.

To assign properties to the light:

1. Select the new light.
2. From the Edit menu, click Object Properties.
3. On the Light page, change the Shadow intensity to 30 and the Spotlight hardness to 60. Experiment with these settings to get the desired effect.
4. Click in the Perspective viewport.
5. From the Render menu, click Render.
To add a bumpy surface to the handle:

1. In the **Layers** dialog box, click on the **Materials** column for the **Handle** layer.

 ![Layers dialog box](image)

2. In the **Material** dialog box, check **Bump**.
 You can use any bitmap file for a bump. The bumps come from the pattern of light and dark in the bitmap image.

3. In the **Open Bitmap** dialog box, select **Pattern.jpg**, then click **Open**.

4. Click **OK** to close the **Material** dialog box.

5. From the **Render** menu, click **Render**.
 The surface of the handle has a bumpy appearance.
To add a texture to the handle:

1. In the Layers dialog box, click on the Materials column for the Handle layer.

2. In the Material dialog box, uncheck Bump.

3. In the Material dialog box, check Texture.

4. In the Open Bitmap dialog box, select Wood.jpg, then click Open.

5. Click OK to close the Material dialog box.

6. From the Render menu, click Render.

 The surface of the handle is textured with a wood grain texture.
To make the handle transparent:

1. In the **Layers** dialog box, click on the **Materials** column for the **Handle** layer.

2. In the **Material** dialog box, uncheck **Texture**.

3. In the **Material** dialog box, change the **Transparency** setting to **50**.

4. From the **Render** menu, click **Render**.

 The handle will look transparent.
To add a surface for a ground plane:

1. Use the **Plane** command (Surface menu > Plane > Corner to Corner) to draw a flat surface in the **Top** viewport.

2. Select the surface.

3. Use the **Properties** command (Edit menu > Object Properties...) on the **Material** page, click **Basic**.

4. In the **Texture section** assign the **Wood.jpg** to the plane.

5. From the **Render** menu, click **Render**.

Rendering with Flamingo

In this part of the exercise you will use Flamingo to assign materials from the material library and set up an environment. You will use the same lights and model.
To assign a material:

1. Select the flat surface.
2. Use the Hide command (Edit menu > Visibility > Hide) to hide it.
3. From the Render menu, click Current Renderer, then click Flamingo Raytrace.
4. In the Layers dialog box, click on the Materials column for the Handle layer.
5. In the Material dialog box, click Plug-in, then click Browse.
6. In the Material Library dialog box, in the Plastics library, in the Transparent folder, select a material, then press OK.
7. In the Material dialog box, press OK.
8. Repeat this process for the Blade layer.
9. Choose a shiny metal material, like Metal\Steel\Polished\Plain.
10. Render the model.

To set up an environment:

1. Use the Options command (Tools menu > Options...) to setup the Flamingo environment options
2. In the Rhino Options dialog box, on the Flamingo page, click the Environment button.
3. On the Environment dialog box, change to a 3 Color Gradient.
 Use the default setting.
4. Check the Ground Plane check box.
5. On the Ground Plane page, click the Material button, and select a material for the ground plane, like Metal\Aluminum\Satin\Checker Plate.
6. On the Environment dialog box, press OK.
7. On the Rhino Options dialog box, press OK.
8 **Render** the model.
Notice that you also get reflections.

Flamingo rendering is covered in more depth in Level 2 training.
For extra practice use the canoe you made in the loft exercise.
Dimensions

You can create simple dimensions on all viewports.

Dimension Types

<table>
<thead>
<tr>
<th>Button</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Button]</td>
<td>Dim</td>
<td>Creates a horizontal or a vertical dimension.</td>
</tr>
<tr>
<td>![Button]</td>
<td>DimAligned</td>
<td>Creates an aligned dimension.</td>
</tr>
<tr>
<td>![Button]</td>
<td>DimRotated</td>
<td>Creates a rotated dimension.</td>
</tr>
<tr>
<td>![Button]</td>
<td>DimAngle</td>
<td>Creates an angular dimension.</td>
</tr>
<tr>
<td>Button</td>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>DimRadius</td>
<td>Creates a radius dimension.</td>
</tr>
<tr>
<td></td>
<td>DimDiameter</td>
<td>Creates a diameter dimension.</td>
</tr>
<tr>
<td></td>
<td>Text</td>
<td>Creates 2-D annotation text.</td>
</tr>
<tr>
<td></td>
<td>Leader</td>
<td>Draw an arrow leader.</td>
</tr>
<tr>
<td></td>
<td>Properties</td>
<td>Edit dimensions and text.</td>
</tr>
<tr>
<td></td>
<td>DimRecenterText</td>
<td>Returns text that has been moved away from its default position to its original location.</td>
</tr>
<tr>
<td></td>
<td>Make2-D</td>
<td>Creates curves from the selected objects as silhouettes relative to the active construction plane. The silhouette curves are projected flat and then placed on the world x,y-plane.</td>
</tr>
</tbody>
</table>
Exercise 64—Practice dimensioning

1. **Open** the model **Dimension.3dm**.
2. **From the Tools menu**, click **Properties**.
3. **In the Rhino Options dialog box**, on the **Dimensions** page, make the following changes.

4. **From the Dimension menu**, click **Linear Dimension**.
5. **Snap to the lower left end** of the part in **Top** viewport.
6. **Snap to the lower right end** of the part in the **Top** viewport.
7. **Pick a point** below the part in the **Top** viewport.

Use object snaps to locate the extension line origins.
8 From the **Dimension** menu, click **Radial Dimension**.

9 Select the lower left quadrant of the arc in the **Front** viewport.

10 Click to place the dimension text.

11 Dimension the rest of the drawing using leaders, text blocks, horizontal, vertical, radius, and diameter dimensions.

12 **Save** your model.

Making a 2-D Drawing from a 3-D Model

Rhino has the ability to generate a two-dimensional drawing from a three-dimensional model, by projecting the geometry to the world coordinate plane, and aligning the views. Options for first angle projection or third angle projection are available. In addition to the three orthographic views, a two-dimensional perspective drawing is also generated. Hidden lines are removed and placed on a separate layer.

Options for creating four views > three parallel viewports and a perspective viewport, or single views of individual viewports are supported.

The Make2D command makes a two-dimensional drawing for all four views.

Exercise 65—Practice making a 2-D drawing for export

1 **Open** the model **Make2D.3dm**.

2 From the **Dimension** menu, click **Make 2-D Drawing**.
3 In the **2-D Drawing Options** dialog box, click **4-view (USA)** and check **Show hidden lines**, and then click **OK**.

![2-D Drawing Options dialog box]

The 2-D drawings are created on the **Top** CPlane near the origin on the world xy plane. View them in the **Top** viewport.

4 Dimension the 2D drawing.

![Dimensioned 2D drawing]

To export the 2-D drawing to AutoCAD:

1 Select the 2-D geometry and the dimensions.

2 From the **File** menu, click **Export Selected**.
3 Change the **Save as type** to **AutoCAD DWG**, the **File** name to **Bracket.dwg**, then click **Save**.

4 In the **AutoCAD Export Options** dialog box, select **AutoCAD 2000**, **Save Curves as Polylines**, **Save Surfaces as Polygon meshes**, **Save Polygon meshes as Polyface meshes**, check **Use Simple Entities**, click **OK**.

The 2-D geometry, layers and dimensions are translated to AutoCAD’s .DWG format.
Printing a wireframe image of your model directly from Rhino is supported. Options for scaling and printing in color are available. Images in the current viewport or all viewports can be printed. Rhino uses your windows printing device for output. While printing to scale is supported, hidden line removal is not supported. Use the `Make2D` command to generate views without hidden-lines to print.

Exercise 66—Practice printing

1. **Open** the model `Printing.3dm`.
2. **Click** in the `Top` viewport.
3. **From the File menu**, click `Print Setup`.
4. **In the Print Setup dialog box**, click `Landscape`, adjust any other options appropriate for your printer or plotter, then click `OK`.
5. **From the File menu**, click `Print`.
6 In the **Print** dialog box, choose the following settings:
 Under **Print area**, click **View**.
 Under **Print scale**, select **Scaled to Fit**.
 Under **Print offset** click **Center objects on paper**.
7 Click **OK**.
 The **Top** viewport will be printed.

To print the current viewport to a scale:
1 From the **File** menu, click **Print**.
2 In the **Print** dialog box, change **Print scale** to **1:20**, then click **OK**.

To print a rendered image:
1 **Open** the model **Render.3dm**.
2 From the **Render** menu, click **Render**.
3 In the render window, from the **File** menu, click **Print**.

The rendered image will be printed to your default Windows printing device, which may be different from what you set in Print Setup.
Part Four: Customizing Workspaces and Toolbars
Rhino Settings

Options

The **Rhino Options** dialog box displays most of the settings that affect your modeling environment. Use it to toggle the settings or redefine them.

The **Document Properties** settings are saved with the Rhino model. The **Rhino Options** settings are saved in the Windows registry and affect every Rhino model.

Exercise 67— Practice with options

To change modeling aids:

1. From the **Tools** menu, click **Options**.
2. In the **Rhino Options** dialog box, click the **Modeling Aids** page.

 The Modeling Aids page controls Grid Snap, Ortho, Planar mode, and Object Snap options.

 These options can be toggled on and off from the dialog box or from the status bar. To change the options for Ortho or object snap, type new values in the boxes. In an earlier exercise you changed the Ortho setting so that it snapped every 30 degrees.

 In the object snap area, **Project object snap to CPlane** projects the snap point to the construction plane even though the object snap point might be in 3-D space.
To change Rhino’s screen appearance:

1. Click the **Appearance** page.
 The Appearance page controls the appearance of the Rhino window.
2. Click the white rectangle next to **Background color** and change it to a different color.
3. Check the **Crosshairs** box.
To change or create shortcuts:

1. Open the **Keyboard** page.
 The Keyboard page sets up shortcut keys for Rhino commands.

2. Type **DisableOsnap _Toggle** in the box next to the **F4** key.
 This gives you a key that toggles your persistent object snaps between on and disabled.
To change or create command aliases:

1. Click the **Aliases** page.
 The commandAliases page allows the user to create custom aliases for Rhino commands.

2. Click **New**.
 A cursor moves into the white area of the dialog box.

3. Type **L**, then press the tab key.
4. Type **! Lines**.
 The exclamation point acts as a cancel.
 Now you will be able to type **L** and press **Enter** at the command line, to begin the **Lines** command.

To change view options:

- Click the **View** page.
 The View page has pan, zoom, rotate, and redraw controls.
To change general options:

- Click the **General** page.

 The General page controls the number of undos retained in memory, startup commands, recent command list limit, AutoSave control, and do not repeat commands, default isocurve density for new surfaces.

To set file options:

1. Click the **Files** page.

 The Files page sets the location of template files and the autosave files.

2. Click **OK** to close the **Options** dialog box.

3. Try the **Lines** alias and the **DisableOsnap** toggle.

 Note how your cursor has changed.

Document Properties

Document properties are all of the settings that are saved with the Rhino model.

Exercise 68—Practice with document properties

To change the grid:

1. From the **File** menu, click **Properties**.
2. Click the **Grid** page.

 The Grid page configures grid, grid axes, and axis icons. You changed the snap spacing in an earlier exercise.

To change render options:

1. Click the **Rhino Render** or **Flamingo** page.

 The Render page controls most of the render options.

2. Click the **Mesh** page.

 This page controls the mesh properties. It will also affect performance.

To set units:

- Click the **Units page**.

 The Units page controls the unit system and the tolerance settings.
Custom Toolbar Layouts

The toolbar layout is the arrangement of toolbars containing command buttons on the screen. The toolbar layout is stored in a toolbar collection file that you can open and save. Rhino comes with a default toolbar layout, and automatically saves the active toolbar layout before closing. You can create your own custom layouts and save them for later use.

You must use an external file manager to delete a toolbar collection file.

Exercise 69— Customizing a toolbar layout

1 Begin a new model.
2 From the Tools menu, click Toolbar Layout.
3 In the Toolbars dialog box, from the File menu, click Save As.
4 In the Save Toolbars Collection dialog box, in the File name box type Level 1, and click Save.

A new toolbar collection file has been created. Toolbar collection files are saved with a .ws3 extension. You will use this new toolbar collection to do some customization.
To show another toolbar:

1. From the Tools menu, click Toolbar Layout.
2. In the Toolbars dialog box, check Curve Tools to show the toolbar.
3. In the Toolbars dialog box, clear Curve Tools to hide the toolbar.
4. Show the Curve Tools toolbar again, then click Close.
To dock the **Curve Tools** toolbar at the right, drag it to the right edge until it changes to a vertical shape, then releasing your mouse button.

To save your toolbar layout:
- In the **Toolbars** dialog box, from the **File** menu, click **Save**.
To create a new toolbar:

1. From the Tools menu, click Toolbar Layout.
2. In the Toolbars dialog box, from the Toolbar menu, click New.
3. In the Toolbar Properties dialog box, in the Name box, type Test, and click OK.

A new toolbar is created with one blank button in it.

4. Close the Toolbars dialog box.

To edit the new button:

1. Hold down the Shift key and right-click the blank button.
2 To enter the tooltips for the left and right mouse buttons, in the Edit Toolbar Button dialog box, under Tooltips, in the Left edit box, type Change Last Object to Layer.
 In the Right edit box, type Change All Curves to Layer.
3 In the Left mouse button command box, type ! SelLast ChangeLayer.
4 In the Right mouse button command box, type ! SelCrv ChangeLayer.

5 Click Edit Bitmap.
6 In the **Edit Bitmap** dialog box, make a picture for the button face image, and click **OK**.

7 In the **Edit Toolbar Button** dialog box, click **OK**.

To copy a button from one toolbar to another:

1. From the **Standard** toolbar, flyout the **Layer** toolbar, and tear it off.
2. While holding down the **Ctrl** key, drag the button you just created to the layer toolbar and drop it.

To add a button to a toolbar:

1. From the **Tools** menu, click **Toolbar Layout**.
2. In the **Toolbar** dialog box, check the **Test** toolbar in the list to show the toolbar.
3. Right click on the **Test** toolbar in the list, and select **Add Button**.

 A blank button is added to the **Test** toolbar.
4 **Close** the dialog box.

Many toolbar functions are available by right-clicking a toolbar’s titlebar.